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Object-Oriented Frameworks

Vitri is an object-oriented framework in the sense that it provides an overall organization and
structure for a family of software abstractions. While frameworks can be specialized to produce
custom applications, they differ from a typical software library in the so-called “inversion of control”
that takes place. Instead of passively responding as libraries do, a framework coordinates and directs
the flow of control within the application. For instance, an optimization framework like Vitri allows
users to “plug in” their simulation models, acting as a front end that iteratively invokes the supplied
model as needed to obtain a solution.

The methods of “attaching” components and models depend on the architectural design prin-
ciples and implementation details adopted in the framework. These variable aspects that are
identified in the application domain are often called hot spots, or plug points. An object-oriented
approach, as is taken in Vitri, leverages on the orthogonal notions of data abstraction, relationships
among types in a hierarchy or lattice, and various forms of ad hoc polymorphism. Realization of
these concepts is afforded by the usual elements of object-oriented programming: (abstract) classes,
methods, fields, inheritance, and interfaces.

Genetic Algorithms

Several modern optimization techniques, including genetic algorithms, neural networks, and sim-
ulated annealing, rely on analogies to natural processes. Genetic algorithms (GAs) are based on
the principle of natural selection, or “survival of the fittest.” To put this analogy to use, computer
programs maintain a population of organisms (potential solutions) that are, ahem, “combined” to
produce new organisms in the next generation. Because a selection scheme screens organisms, only
the fittest are likely to have offspring in the subsequent generation. As generations pass, the average
fitness of the organisms improves; eventually, the program converges and the most fit organism is
returned as the solution.

A sample problem

Consider the knapsack problem, in which a burglar tries to maximize the value of his takings:
Every object that he might place into the bag has a size (or cost) and a value (or benefit). The
decision problem then is to determine which objects to place in the bag. For example, imagine a
bag of size 10 and the following five objects from which to select:

Object: 1 2 3 4 5
Value: 1 13 12 19 1
Size: 7 3 5 7 9

One solution to the problem, though not a very good one, is to take items 2 and 3, which have a
combined size of 8 and a value of 25. A GA must be capable of representing this and any valid
solution to the problem. Such candidate solutions (i.e., organisms in a GA) can often represented
as binary strings, or arrays (a so-called “binary encoding”). For example, the previous solution
can be described by the binary array 〈01100〉, where a 1 means “take the object” and a 0 means
“leave the object.” For other problems, other encodings may be used to represent a solution; these
include gray, tree, and real-valued encodings, among others.
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Evaluating fitness

In addition to representing organisms in a population, a GA needs to have some way of determining
how fit a solution is. For example, the organism i = 〈01010〉 should be considered more fit than
the previous, since it has a value of 32. Although it looks like the fitness of i can be expressed
as i · Value, this does not take into account whether or not the objects will fit into the bag.
For example, j = 〈11111〉, which has a value of 46, is not feasible since the combined size of all
objects is 31. One way to deal with infeasible solutions is to penalize them so that they don’t
appear as attractive as feasible solutions. For this problem a reasonable fitness function might be
f(x) = x · Value − 3g(x), where g is the excess size, e.g., g(x) = max(x · Size, 10) − 10, and 3 is
an arbitrarily selected “penalty” for exceeding the capacity. Thus, for solutions i and j, f(i) = 32
(still) and f(j) = −17.

Producing offspring

The basic idea of GAs is to explore decision space by generating new solutions from previous ones.
This process, known as “crossover,” is analogous to the way chromosomes line up and then swap
portions of their genetic code. For example, consider the following organisms:

x1: 〈 1 1 0 1 0 〉
x2: 〈 0 0 1 0 0 〉

When x1 and x2 are lined up with each other, as above, a point along the strings is selected at
random and the portions to the right of that point are exchanged to produce two offspring. For
example, if object 3 was randomly chosen as the crossover point, the following two new organisms
would result:

x′
1: 〈 1 1 1 0 0 〉

x′
2: 〈 0 0 0 1 0 〉

The foregoing approach for generating offspring is referred to as “one-point crossover,” for the
obvious reasons. An alternative that sometimes improves convergence considers each position in
turn and, using a random draw, decides whether or not to perform the swap. This latter approach
is referred to as “uniform crossover.”

Competing for survival

A straightforward way of incorporating crossover in a GA is to select two organisms to compete
for the opportunity to produce offspring. This competition-based process is usually referred to
as “probabilistic binary tournament selection.” For example, if x1 and x2 are randomly selected
organisms, then the more fit of the two is determined to be the winner. To avoid reaching a homo-
geneous population too quickly, however (and hence a poor solution), some diversity is maintained
by letting the less fit organism sometimes win, e.g., with a probability of 25%. The tournament
selection algorithm is as follows:

for each organism i desired in the new generation do
select two organisms, x1 and x2, from the old generation at random
if ran.nextFloat() < 0.75 then

let organism i be the more fit of x1 and x2

else
let organism i be the less fit of x1 and x2
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where ran is an instance of class java.util.Random, and nextFloat() is a method that returns
a random number r such that 0 ≤ r < 1. After filling a new generation with competition winners,
those winners can be taken successively in pairs and replaced (using crossover) by their offspring.

A popular alternative to tournament selection, “stochastic universal selection,” simulates the
spin of a roulette wheel whose slots are proportional to each organism’s fitness. After a single spin,
markers, all equally spaced, are placed along the outside of the wheel. The number of markers
landing in each slot (possibly zero) determines the number of copies of an organism that are placed
in the next generation.

Regardless of the selection technique, an additional measure, mutation, is typically used to
maintain a diverse population and to recover genes that may have been lost from the “gene pool.”
After populating a new generation, each bit of each organism is changed (from 0 to 1, or from 1 to
0) with a very small probability, e.g., 5 in 1000.

A simple genetic algorithm

Putting all of this together into a simple GA is not too difficult. The basic algorithm is as follows,
in which Pt is the population in generation number t:

t = 0
new population (Pt)
if termination condition not met then

t = t + 1
Pt = select(Pt−1)
crossover(Pt)
mutate(Pt)

Programs that implement the algorithm can be structured in a variety of ways, however, and the
design decisions that are made can profoundly affect the ease with which new problems can be
accommodated. In the design that follows, two complementary approaches are taken to enhance
flexibility:

• Provide a taxonomy of classes that allows customization at a different levels of abstraction.
Selection schemes, crossover techniques, and even entirely different algorithms all fit into the
same framework.

• Use abstraction techniques that require only that certain behavior be implemented without
dictating how it is achieved. Importantly, any GA encoding technique, whether binary, real-
valued, or otherwise, can then be accommodated since it is hidden.

Vitri

Using the principle of correspondence, programs are designed to mirror the problem domain, so we
have classes representing populations and organisms, as well as a genetic algorithm itself, which
keeps track of problem parameters and controls execution of the program. A diagram of the core
Vitri classes is shown in Figure 1 using UML, a graphical modeling language for describing program
structure. In the diagram, closed arrowheads indicate a subclass or “is-a” relationship and open ones
with dashed lines indicate a “uses” relationship. For instance, a SimpleGA is-a GeneticAlgorithm,
and a Population uses one or more Organisms. The abstract class Population leaves its selec-
tion scheme undetermined: a BtsPopulation is a population that provides a binary tournament
selection scheme, whereas a SusPopulation is a population that uses stochastic universal selection.
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Figure 1: Class Structure used in Vitri

To make use of this program structure a user must do two things:

1. Extend class Organism with a concrete class that models the problem of interest.

2. Implement a main method that instantiates a population and runs a genetic algorithm.

As an alternative to item 1, users may choose to extend class ByteArrayOrganism, which partially
implements class Organism. A ByteArrayOrganism supports binary encodings or other string-like
encodings with each position assuming as many as 28 different states. Because this class implements
basic genetic operators for crossover and mutation, the amount of coding for new problems is
minimal.

To satisfy item 2 users implement a main method that sets parameters and initiates the search
process. A tiny main program that uses default settings is shown below.

1. public static void main(String[] args) {
2. BtsPopulation pop = new BtsPopulation(100);
3. pop.fill(new MyOrganism());
4. pop.randomize();
5. GeneticAlgorithm ga = new SimpleGA(pop);
6. MyOrganism fittest = (MyOrganism) ga.run(50);
7. }

In line 2 the program instantiates a population that uses binary tournament selection and is capable
of holding 100 organisms. Line 3 fills that population with copies of an organism (MyOrganism)
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whose class is user-defined. Line 4 completes the setup of the initial population by randomizing each
organism it contains. Lines 5 and 6 create and run a simple genetic algorithm on the population
for 50 generations. On completion, the variable fittest contains the best solution found during
the GA run.

To better understand how this program works, let’s take several of the core Vitri classes in turn
and describe their use and behavior. For a detailed listing of the signatures of fields, constructors,
and methods, see Appendix A. The full API description in Javadoc is provided with the Vitri 2.0
distribution.

Class GeneticAlgorithm

This class is designed to accommodate multiple, coexisting algorithmic implementations of a ge-
netic algorithm. Subclasses are required to implement a constructor, which sets the initial popu-
lation, and the run(int, int) method. To the extent possible, subclasses should also update the
population and generation number fields during iteration; doing so enables, for instance, the use
of dynamic or adaptive penalty functions in organism evaluation. They should also use the value
of print level to control the amount of detail printed during execution. By design, this class is
intended to be reentrant in the sense that a genetic algorithm, say, can be run within a genetic
algorithm without any interference between the two levels of search.

Class SimpleGA

This class implements a simple genetic algorithm that begins with an initial population, and then
iteratively (a) selects a mating pool, (b) produces offspring by pairing members of the pool and per-
forming crossover, and (c) mutates each of the offspring to produce a new generation. Termination
of this iterative process is based on two limits: a specified number of generations, and a specified
number of generations without improvement in the fittest organism. An incumbent organism —
the fittest seen at any point in the computation — is maintained and is made available to the
selection operation (implemented by a given population) for implementing an elitism policy.

Class Population

This class provides a skeletal implementation of a population, which maintains a collection of
Organisms. Operations provided by Population are straightforward, and often just iterate over
Organism instances. For example, the mutate method successively mutates each organism in the
population.

Subclasses need provide only a selection policy to realize a concrete population; this is accom-
plished by implementing the abstract method select(Organism), which creates a new population
from an old one using a customized selection process. Note that such implementations should place
organism clones, and not the organisms themselves, into the new population. Also, to improve
convergence of the search process, a clone of the incumbent solution may be placed in the new
population; it is given as an argument to the select method.

Class Organism

This class provides a skeletal implementation of an organism. A key consideration in its design is
that the contractual obligations imposed on an organism’s realization focus on the organism’s be-
havior and not on its implementation. That is, an organism’s encoding, e.g., 0/1 versus real-valued
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encodings, is hidden, allowing any encoding approach to be taken and used within this frame-
work. Subclasses need implement only the following methods: randomize, crossover, mutate,
and evaluate.

Because fitness evaluation can be costly in some applications, an organism is designed so that
evaluation need happen only once, which is accomplished by caching evaluation results. This
policy, however, places responsibility on an organism’s storage-modifying operators to clear its
cache, typically by calling the unsetFitness method.

Class Fitness

A fitness is a mutable value produced when evaluating an an organism. Its role is to act as a hook
for GA schemes that need to manage or incorporate multiple values for each fitness, such as raw
fitness values or multi-objective values.

Class ByteArrayOrganism

A ByteArrayOrganism provides a common implementation for Organisms that are represented as
an array of genes in which each gene has a maximum of 28 (256) possible states. A subclass of
ByteArrayOrganism need implement only a constructor and the following methods:

• crossover, which may be implemented in terms of two methods already provided by this
class: the uniformCrossover and onePointCrossover methods,

• mutate, which may be implemented in terms of the mutate(double) method provided, and

• evaluate, which should return the fitness of the organism.

Customizing an Organism

Using Vitri for genetic search requires programming, but no changes are required to existing code.
The Organism class provides the primary plug point for solving new problems, and other parts
of the framework can be similarly used to customize the behavior of the genetic algorithm itself.
Here we describe how to solve new problems by defining a subclass of ByteArrayOrganism. Sub-
classing ByteArrayOrganism rather than class Organism is appropriate for problems that have
binary or other string-like encodings, since many of the GA operations are already provided by
ByteArrayOrganism.

To solve a new problem using ByteArrayOrganism we need to do two things: extend class
ByteArrayOrganism, and implement a main method that runs a GA. We can do both of these
in a single class definition, a template of which is shown in Figure 2. The template displays
two important features: an overall structure for adding a new problem type to Vitri, and places
where customization may occur, indicated in italics. With respect to structure, the new class,
MyOrganism, has a constructor, the three requisite methods for specialization (crossover, mutate,
and evaluate), and the static main method for running the GA. Combined, the MyOrganism
constructor and evaluate method encode the new problem; the other methods affect the running
behavior of the GA.

The MyOrganism constructor is responsible for initializing the space used by a single organism.
The storage field is a byte array (the organism’s “chromosome”) of length 〈size〉 that can represent
problems with up to 8〈size〉 different states, since each position is a byte, or 8 bits. Because problems
often require fewer states, the values field may be set to 〈states〉, the number of possible states at
each position, e.g., 〈states〉 is 2 for a typical binary encoding.
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public class MyOrganism extends ByteArrayOrganism {

public MyOrganism() {
storage = new byte[〈size〉];
values = 〈states〉;

}

protected Fitness evaluate() {
calculate how fit this organism is
return new Fitness(〈fitness〉);

}

public void crossover(Organism org) {
uniformCrossover(org); // or choose onePointCrossover

}

public void mutate() {
mutate(〈mutation probability〉);

}

public static void main(String[] args) {

GeneticAlgorithm.random.setSeed(〈seed〉);

// or choose SusPopulation below
BtsPopulation pop = new BtsPopulation(〈population size〉);
pop.fill(MyOrganism());
pop.randomize();

GeneticAlgorithm ga = new SimpleGA(pop);
System.out.println(ga);
MyOrganism fittest = (MyOrganism) ga.run(〈number of generations〉);

}
}

Figure 2: Customizing an Organism in Vitri
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The evaluate method is where the organism’s byte array is interpreted, and this is where
the problem itself is introduced. It calculates a scalar, the relative level of fitness of a specific
organism, by inspecting the byte array. That scalar value, 〈fitness〉 is not returned directly but
rather is “wrapped” by a Fitness object, which is returned to and used by the GA.

Now that the problem has been encoded, we turn to customizing the GA’s behavior. A
ByteArrayOrganism provides both crossover and mutation methods that can be used to do so. In
the template, uniform crossover is chosen by calling the ByteArrayOrganism’s uniformCrossover
method, although one-point crossover could also have been used. Of course, a completely cus-
tom crossover technique could be implemented here by the user. With respect to mutation, the
mutate(double) method in ByteArrayOrganism takes a parameter, 〈mutation probability〉, that
sets the likelihood that a single position in the byte array is mutated. For problems with a values
field greater than 2, the mutation of a particular position results in a random change to a different
value. As with crossover, mutate can alternatively implement a completely custom technique.

Although a similar static main method has been described earlier, the implementation in Fig-
ure 2 shows a few additional details, such as how to set a seed for Vitri’s random number gen-
erator by giving the 〈seed〉 parameter to setSeed. It also comments that SusPopulation can be
used in place of BtsPopulation to perform the selection operation by stochastic universal selec-
tion. Finally, this implementation of main makes explicit the settings for 〈population size〉 and
〈number of generations〉, and adds a println statement that echos GA settings to the user’s dis-
play.

The Knapsack Problem

To see how a specific problem is “plugged in” to the Vitri framework, we return to the knapsack
problem. The implementation is shown in Figure 3, which essentially fills out the template in
Figure 2.

Recall from earlier discussions that a specific knapsack can be represented as a binary string
in which a 1 means “take the object” and a 0 means “leave the object.” As a result, the values
field is set to 2 in the KnapsackOrganism constructor. The size of the byte array is the number of
objects that may potentially go into the knapsack; its value comes from the static size field, which
is set to be the length of the benefit and cost arrays. The values in those arrays are taken from
the earlier problem statement for the knapsack problem.

The evaluate method implements in Java the fitness function for knapsacks, although it relies
on a dot-product method that must be implemented. Other parts of class KnapsackOrganism have
already been described.

Experimenting with Knapsacks

Before trying to solve your own problem, try experimenting with an existing one to see how Vitri
works. The KnapsackOrganism class in the Vitri distribution solves a larger instance of the knapsack
problem than that described earlier. The problem has 40 items that may be placed into the
knapsack, which has an upper limit on cost of 200. The optimal solution to the problem has a
benefit of 306, which was found via integer programming.

Begin by compiling and running Vitri with this problem to see how well you can fill your
knapsack. Also try using some of the different features of Vitri to see what effect they have on
output and solution quality. Here are some things to try.
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public class KnapsackOrganism extends ByteArrayOrganism {

private static final int[] benefit = { 1, 13, 12, 19, 1 };
private static final int[] cost = { 7, 3, 5, 7, 9 };
private static final int size = benefit.length;

private static final int PENALTY = 3;
private static final int MAX_COST = 10;

public KnapsackOrganism() {
storage = new byte[size];
values = 2;

}

public int dot(int[] a) {
int sum = 0;
for (int i = 0; i < storage.length; i++)

sum += storage[i] * a[i];
return sum;

}

protected Fitness evaluate() {
int b = dot(benefit);
int c = dot(cost);
return new Fitness(b - (c > MAX_COST ?

PENALTY * (c - MAX_COST) :
0));

}

public void crossover(Organism org) {
uniformCrossover(org);

}

public void mutate() {
mutate(0.008);

}

public static void main(String[] args) {

GeneticAlgorithm.random.setSeed(0);

BtsPopulation pop = new BtsPopulation(50);
pop.fill(new KnapsackOrganism());
pop.randomize();

GeneticAlgorithm ga = new SimpleGA(pop);
System.out.println(ga);
KnapsackOrganism fittest = (KnapsackOrganism) ga.run(25);

}
}

Figure 3: Solving the Knapsack Problem in Vitri
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1. Run KnapsackOrganism “as is” by compiling all files

javac *.java

and then invoking the class

java KnapsackOrganism

The output should look something like that shown in Figure 4 using the default print level
(2). It includes not only the GA parameters that are used, but also, at each generation, the
fittest solution seen so far (the “incumbent”), the fittest solution in the current generation,
and the minimum, maximum, and average fitnesses of all organisms in the current generation.
Individual solutions are shown with a particular syntax. For instance, the best solution found
is

[305.00] < 0 1 1 1 0 1 ... 0 1 1 1 1 1 > b = 305 c = 200

which has a fitness (in square brackets) of 305, a binary array with values shown in angle
brackets, and finally a benefit (b) of 305, and a cost (c) of 200.

2. Change the seed in the static main method of KnapsackOrganism.java, recompile it, and
observe the different solutions obtained with different seeds. Some will be better and some
will be worse. This behavior has to do with the non-deterministic nature of GAs.

3. Reduce the print level to 1 by adding the line

ga.setPrintLevel(1);

just above the line with ga.run(50), which runs the GA for 50 generations. Recompile
and re-run. Notice that intermediate solutions are not printed, only the final solution. A
print level of 0 turns off all printing during a GA run, including display of the final solution.
This behavior is useful when a GA is embedded in another program, which somehow uses
the fittest organism returned by a call to ga.run. Note that the static main method of
KnapsackOrganism.java simply ignores the result of that call and exits.

4. Look again at Figure 4 and examine the GA parameters that are echoed at the top of the
output. It indicates that classes Population and BtsPopulation have some default settings
that may be changed. Explore the Javadoc APIs provided in the Vitri distribution for these
two classes and find descriptions of the following methods

public void setCrossoverProbability(double p)
public void setElitism(boolean b)
public void setSelectFittestProbability(double p)

Try invoking these methods from the static main method of KnapsackOrganism with different
settings. As an example, the call

pop.setElitism(true);

changes the binary tournament scheme so that the incumbent organism receives special treat-
ment during selection: if it happens not to be selected for the new generation then it is ex-
plicitly added to that generation anyway. This call may appear anywhere after population
pop is defined but before the ga.run method is called.
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---- Genetic Algorithm Parameters ----
Genetic algorithm class: SimpleGA
Print level: 2
Population class: BtsPopulation
size: 100
crossover_probability: 0.75
elitism: false
select_fittest_probability: 0.75

Organism class: KnapsackOrganism
storage.length: 40
values: 2
crossover: uniform
mutation_probability: 0.008

---- Generation 1 ----
Incumbent organism:
[235.00] < 0 0 1 1 1 1 ... 0 1 0 1 1 1 > b = 235 c = 196

Fittest in current generation:
[235.00] < 0 0 1 1 1 1 ... 0 1 0 1 1 1 > b = 235 c = 196

Min/Max/Avg fitness: -124.00/235.00/140.67
---- Generation 2 ----
Incumbent organism:
[260.00] < 0 1 0 1 0 1 ... 1 1 1 0 1 1 > b = 260 c = 195

Fittest in current generation:
[260.00] < 0 1 0 1 0 1 ... 1 1 1 0 1 1 > b = 260 c = 195

Min/Max/Avg fitness: -49.00/260.00/151.33

...

---- Generation 49 ----
Incumbent organism:
[305.00] < 0 1 1 1 0 1 ... 0 1 1 1 1 1 > b = 305 c = 200

Fittest in current generation:
[304.00] < 0 1 1 1 0 1 ... 0 1 0 1 1 1 > b = 304 c = 200

Min/Max/Avg fitness: 134.00/304.00/250.19
---- Generation 50 ----
Incumbent organism:
[305.00] < 0 1 1 1 0 1 ... 0 1 1 1 1 1 > b = 305 c = 200

Fittest in current generation:
[292.00] < 0 1 1 1 0 1 ... 0 1 1 0 1 1 > b = 292 c = 198

Min/Max/Avg fitness: 119.00/292.00/255.12
---- Final Solution ----
Organism:
[305.00] < 0 1 1 1 0 1 ... 0 1 1 1 1 1 > b = 305 c = 200

Number of generations: 50
Evaluation count: 5100

Figure 4: Abbreviated Output from the Knapsack Problem
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5. Try using stochastic universal selection by replacing BtsPopulation with SusPopulation as
follows:

SusPopulation pop = new SusPopulation(50);

Additional Exercises for the Reader

1. Solving some problems with a GA can take a long time, so effectiveness of the search process
may warrant some scrutiny. If the total “computation cost” is expressed by the number of
times the evaluate method is called, how can one best use available CPU cycles to get “good”
solutions? That is, you might try to answer questions about the knapsack problem such as:
How many evaluations are being used to produce a given solution? What is an appropriate
ratio of the population size to the number of generations? What effect do mutation and
selection rates have? Try experimenting a little, but remember: this is a stochastic problem,
and it pays to think about statistical averages (using various seeds on the same problem
instance).

2. Because constraints are only penalized, and not enforced, it is possible that a GA can return
an infeasible solution. Try running the knapsack problem with various seeds to see if this
happens for you (the actual costs exceeds the allowable cost in this situation). Although one
might be inclined to increase the penalty, such a tactic can actually worsen convergence to
good solutions. Try setting your penalty to 400, e.g.,

private static final int PENALTY = 400;

and see what happens to the quality of your solutions. An alternative is to start out with a low
penalty and gradually increase it with each passing generation. Try making this change by
modifying the evaluate method of class KnapsackOrganism. Can convergence be improved
using this technique? Can the number of generations or the population size be reduced?

3. There’s a very simple heuristic available for solving the knapsack problem. Ever hear of
“bang for the buck” or “benefit-cost ratio?” Implement a procedure or shell script using a
combination of benefit-cost ratio and sorting, and see how it compares with a GA.

4. Find a different problem to optimize. Describe the problem, implement a class (analogous to
class KnapsackOrganism), and see how good a solution you can obtain. Be sure to present
your results in a way that someone unfamiliar with your problem can understand.

13



Appendix A Class Summaries

Class GeneticAlgorithm

public abstract class GeneticAlgorithm

Field Summary

public static final java.util.Random random
protected Population population
protected int generation_number
protected int print_level

Constructor Summary

protected GeneticAlgorithm(Population p)

Method Summary

public Organism run(int max_generations)
public abstract Organism run(int max_generations,

int max_generations_wo_improvement)
public Population getPopulation()
public int getGenerationNumber()
public int getPrintLevel()
public void setPrintLevel(int level)
public String getSettings()
public String toString()

Class SimpleGA

public class SimpleGA extends GeneticAlgorithm

Method Summary

public SimpleGA(Population pop)
public Organism run(int max_generations,

int max_generations_wo_improvement)
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Class Population

public abstract class Population

Field Summary

private double crossover_probability
protected Organism[] storage

Constructor Summary

protected Population(int size)

Method Summary

public void fill(Organism prototype)
public void randomize()
public Iterator iterator()
public int size()
public void setCrossoverProbability(double p)
public double getCrossoverProbability()
public abstract Population select(Organism incumbent)
public void crossover()
public void mutate()
public Organism getRandomOrganism()
public Organism getFittestOrganism()
public double getAvgFitness()
public double[] getFitnessStats()
public String getSettings()
public String toString()
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Class Organism

public abstract class Organism implements Cloneable, Serializable

Field Summary

private static int evaluation_count
protected transient Fitness fitness

Method Summary

protected Object clone()
public abstract void randomize()
public abstract void crossover(Organism org)
public abstract void mutate()
protected abstract Fitness evaluate()
public static int getEvaluationCount()
public static int resetEvaluationCount()
public void unsetFitness()
public final double getFitness()
public Fitness getFitnessObject()
public void setFitnessObject(Fitness f)
public String getSettings()
public String toString()

Class Fitness

public class Fitness implements Cloneable, Serializable

Field Summary

protected double value

Constructor Summary

public Fitness(double value)

Method Summary

public Object clone()
public double getValue()
public void setValue(double value)
public String toString()

16



Class ByteArrayOrganism

abstract public class ByteArrayOrganism extends Organism implements Cloneable

Field Summary

protected byte[] storage
protected int values

Method Summary

public Object clone()
public void randomize()
public void uniformCrossover(Organism org)
public void onePointCrossover(Organism org)
public void mutate(double mutation_probability)
public String getSettings()
public String toString()
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