
Asynchronous Genetic Algorithms for
Heterogeneous Networks using

Coarse-Grained Dataflow

John W. Baugh Jr.1 and Sujay V. Kumar2

1 North Carolina State University, Raleigh, NC 27695 USA
john.baugh@ncsu.edu

2 NASA Goddard Space Flight Center, Greenbelt, MD 20771 USA
sujay@hsb.gsfc.nasa.gov

Abstract. Genetic algorithms (GAs) are an attractive class of tech-
niques for solving a variety of complex search and optimization prob-
lems. Their implementation on a distributed platform can provide the
necessary computing power to address large-scale problems of practical
importance. On heterogeneous networks, however, the performance of
a global parallel GA can be limited by synchronization points during
the computation, particularly those between generations. We present a
new approach for implementing asynchronous GAs based on the dataflow
model of computation — an approach that retains the functional prop-
erties of a global parallel GA. Experiments conducted with an air quality
optimization problem and others show that the performance of GAs can
be substantially improved through dataflow-based asynchrony.

1 Introduction

Numerous studies have sought to exploit the inherent parallelism in GAs to
achieve better performance. A recent report by Cantu-Paz [4] surveys the exten-
sive research in this area and categorizes techniques for parallelization. One of
the more straightforward techniques is global parallelization, in which the eval-
uation of individuals is performed in parallel [3]. Certain variations on global
parallel GAs, such as evolving independent subpopulations [8] and hierarchi-
cally evolving populations [7], have also been developed. These and other global
parallel GAs are synchronous in the sense that computations involving subse-
quent generations may not proceed until those of the current generation are
complete. The speedup lost as a result of these synchronization points can be
significant, particularly in a heterogeneous, networked environment, since the
presence of a single slow processor can impede the overall progress of the GA.

The limitations of global parallel GAs due to end-of-generation synchroniza-
tion points have been studied by a number of researchers. Most of the reported
approaches use localized evolution strategies such as island-based approaches [5,
9] to achieve asynchrony. However, approaches other than global parallelization
introduce fundamental changes in the structure of a GA [3]. For example, island-
based GAs work with multiple interacting subpopulations whose parameters for

2 John Baugh and Sujay Kumar

interaction require additional, problem-specific tuning. Poor settings can result
in either convergence to an inferior solution or suboptimal parallel performance.
Steady-state GAs [10], which work with a single evolving population, are another
means of eliminating end-of-generation synchronization points. Instead of plac-
ing offspring in subsequent populations, such GAs return them to the original
population by an operator that selects individuals to be replaced. In addition
to suffering in some cases from problems of premature convergence, steady-state
GAs, like island-based approaches, introduce fundamental changes in the GA.

In this paper, we present a new approach for implementing asynchronous
GAs that is functionally equivalent to a global parallel GA, and hence to a se-
quential GA as well. By functionally equivalent we mean that the outputs are
determined by precisely the same numerical operations and are likewise iden-
tical. Equivalence is achieved by “unrolling” the main loop of a global parallel
GA, i.e., the loop responsible for advancing from one generation to the next.
Inter-generational data dependencies are then captured formally using dataflow
graphs, which enable the concurrent processing of multiple generations to the
extent allowed by those dependencies. The benefits of functional equivalence be-
tween sequential and parallel implementations are substantial. Numerical results
obtained from either implementation can be compared one-to-one with assur-
ance that artifacts have not been introduced via parallelization. Further, the
additional parameter tuning required when moving from sequential to parallel
runs of a GA need not be repeated.

While applicable in other contexts, our approach targets GAs on heteroge-
neous workstation networks that may need hours, days, or even weeks to com-
plete. In such a scenario participating computers may vary over time in their
availability and in the resources that are committed to a given GA run. This
type of variability imposes severe performance penalties when extraneous syn-
chronization points are encountered. For all its benefits with compute-intensive
runs, though, it is equally appealing that the approach adds very little compu-
tational overhead: it is lightweight enough to be imperceptible on runs taking
well under a minute to complete.

2 Dataflow Principles

Dataflow [6] is a term that refers to algorithms or machines whose order of exe-
cution is based on the availability and forwarding of data. A dataflow program
is a directed graph with nodes that represent operators and directed arcs that
represent data dependencies. Nodes are computational tasks, and may be primi-
tive machine-level instructions or arbitrarily complex functions. As a result, the
dataflow model is applicable to fine- or coarse-grained parallelism. In addition
to supporting varying levels of parallelism, the dataflow model also supports
various types of parallelism. For instance, vectorizing and pipelining are simply
special cases of standard flow graphs.

In the dataflow model, data values are carried on tokens, which travel along
arcs, which we model as one-place buffers. The status of nodes can be determined

Lecture Notes in Computer Science 3

by a simple firing rule: A node is said to be firable when the data it needs are
available. When a node is fired, its input tokens are absorbed. The computation is
performed and the result is sent to its output arcs for other nodes to use. There
is no communication between tasks — each task simply receives and outputs
data.

The dataflow model has the following properties [1]:

– parallelism: nodes may execute in parallel unless there is an explicit data
dependence between them;

– determinacy: results do not depend on the relative ordering in which nodes
execute.

The natural parallelism in the dataflow model occurs because it does not force
over-specification of an algorithm. The firing rule only says when a node can
fire. It does not require that it be executed at any particular time.

3 Using Dataflow for Asynchrony

A synchronous distributed GA (SDGA) based on global parallelism begins with
an initial population from which subsequent ones are obtained through a se-
lection process. Here we assume the use of a binary tournament scheme, which
selects two individuals at random, evaluates their fitnesses remotely, and pro-
duces a single winner. To generate a new population of size P this process is
performed P times. Processor loads are dynamically balanced by placing evalua-
tion requests in a task pool. Crossover and mutation operators are then applied
and the entire process is repeated until convergence.

The “repeat until convergence” part of the above algorithm forces synchro-
nization at the end of each generation since individuals in subsequent genera-
tions cannot be evaluated until all of their individuals are in place. An asyn-
chronous distributed GA (ADGA) is obtained by “unrolling” this loop and
building dataflow graphs that capture the algorithm’s inter-generational data
dependencies. Intuitively, once a sufficient number of individuals have been eval-
uated in one generation, some of their offspring can be produced and undergo
evaluation, even before the prior generation is complete. The extent to which
generations are processed concurrently is limited only by the data dependen-
cies derived from the synchronous implementation. Typically a “band” of 2 to 4
generations is active at any one time as the computation unfolds.

Pseudo-code for an ADGA using dataflow is shown in Figure 1. Populations
are constructed and named using the new population procedure, which initiates
enough dataflow threads (or “lightweight” processes) to carry out the genetic
operations necessary for that generation. As each dataflow thread completes its
task, the resulting offspring are placed in the subsequent generation. The succ
function finds and returns the subsequent (or “successor”) generation: if it does
not exist it is created via new population, which has the side effect of forking
a new round of dataflow threads for the next generation unless a termination
condition is met.

4 John Baugh and Sujay Kumar

Pfinal = empty

main
new population (P0)
while Pfinal is empty do wait
return fittest from Pfinal

procedure new population (Pt)
if termination condition met
then Pfinal = Pt

else start n/2 threads: dataflow (Pt)

thread dataflow (Pt)
place 4 random individuals from Pt in graph

(evaluate remotely, compete, mate)
write 2 offspring into succ (Pt)

function succ (Pt)
if Pt+1 is empty
then new population (Pt+1)
return Pt+1

Fig. 1. Pseudo-code for an Asynchronous GA

An illustration of a running ADGA program is shown in Figure 2. The fig-
ure depicts three active generations, each with a population of 10 individuals.
Unshaded circles in each population denote empty token positions — a place to
put an individual once it is produced. The initial population, G1, begins with
randomly generated individuals so all of its circles are filled with tokens. The
figure shows that some processing has already occurred. Dataflow graphs D11,
D12, D14, and D15 have completed, as indicated by their dashed outlines and
the fact that they have produced offspring (shaded circles) in generation G2.
Dataflow graph D13, on the other hand, is still working: it has a solid outline
and has yet to produce its offspring in generation G2. There is a mix of working
and completed dataflow graphs in generation G2 as well. In generation G3, how-
ever, no dataflow graphs have completed, and some are still waiting for input.
No space will be allocated for generation G4 until one of the graphs in G3 is
ready to produce its offspring.

The inputs to each dataflow graph are the randomly selected individuals
that will be used in the genetic operations. For instance, dataflow graph D13
takes individuals 7, 2, 5, and 0 from generation G1 and produces its offspring
in positions 4 and 5 of generation G2. This behavior is more clearly seen in
Figure 3, which provides a detailed view of dataflow graph D13. As shown in
the figure, individuals 7 and 2 compete for position 4, and individuals 5 and 0
compete for position 5. This processing is performed by nodes in the graph, each

Lecture Notes in Computer Science 5

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

2 5 8 1 6 4 5 4 7 2 5 0 2 7 9 7 9 4 6 7

6 8 8 3 0 5 6 7 0 0 3 3 9 8 4 6 0 3 6 7

0 0 2 2 0 4 8 0 3 2 1 4 0 6 9 2 6 2 7 4

G3

G2

G1

D11 D12 D13 D14 D15

D21 D22 D23 D24 D25

D31 D32 D33 D34 D35

Fig. 2. Dataflow Graphs Dynamically Unfolding

6 John Baugh and Sujay Kumar

being implemented by concurrent threads that block until their requisite inputs
are available.

The Copy nodes ensure that an individual can be selected and processed
simultaneously by other dataflow graphs. The need to copy is a result of having
data flow through the model via tokens instead of being referenced as variables
— a fundamental requirement of the dataflow model. Pointer copying is suffi-
cient here, ensuring implementation efficiency. Compare nodes are used to keep
track of an incumbent organism — the fittest seen during the GA run. Other
nodes in the graph —Evaluate, Compete, and Mate— perform the usual genetic
operations. True parallelism is obtained in the implementation of the Evaluate
nodes, which place in a task pool a request to evaluate the individual’s fitness
on a remote processor; each blocks until the result becomes available.

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9
G1

G2

Copy

Compare Compare CompareCompare

Evaluate

Compete Compete

Copy Copy

Mate

EvaluateEvaluateEvaluate

Copy

Incumbent

Fig. 3. Details of Dataflow Graph D13

4 Analysis and Results

Realizations of the SDGA and ADGA approaches, as described above, have been
conveniently implemented in the Java programming language using its multi-

Lecture Notes in Computer Science 7

threading capabilities and socket libraries for network communication. The im-
plementations have been shown to be both efficient and portable across multiple
platforms and operating systems — even within a single GA run. Experiments
have been conducted with homogeneous as well as heterogeneous systems of
processors, and simple empirical models have been developed to predict execu-
tion times. We begin by describing these models and then comparing predicted
results with those obtained on a simple 0/1 knapsack problem and on a more
complex air quality management problem.

4.1 Homogeneous System of Processors

Consider a homogeneous network of computers consisting of N identical proces-
sors. For a single generation of a GA to complete, P organisms must be evaluated.
It is assumed that all of the N processors start simultaneously, and that each
takes time tcomp to execute a fitness evaluation and time tcomm for communi-
cation with the client. The tasks associated with the GA can then be laid out
in blocks, with each block representing the tasks performed by N processors in
time tcomp + tcomm, as shown in Figure 4.

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

1 2 3 4 5 Generations

2

N

3

1

P
ro

ce
ss

or
s

Block 1 Block 2

commt t comp

n

Fig. 4. GA Tasks Executing on N Homogeneous Processors

8 John Baugh and Sujay Kumar

The pattern of blocks repeats itself until the end of a generation, at which
point some number of evaluations n remain to be performed. Since N individuals
are evaluated in each block, the total number of blocks in a generation is equal
to d P

N e. From the figure, the time taken for a single generation (Tg) and the
total time taken by an SDGA (Tsync) can be estimated as:

Tg = dP

N
e(tcomp + tcomm) (1)

Tsync = Tg G

= dP

N
e(tcomp + tcomm)G

(2)

In the case of an ADGA, the processors are not constrained by the lack of
available tasks at the end of a generation since, in practice, a sufficient number
are available from subsequent generations to avoid idling. The total number of
tasks in an ADGA evaluation is PG. Since there are N processors the total time
taken by an ADGA (Tasync) can be estimated as:

Tasync =
P G

N
(tcomp + tcomm) (3)

4.2 Heterogeneous System of Processors

To model a heterogeneous system, ns identically slow processors are introduced
into the system of N processors. Each of these slow processors is assumed to
require a factor of f more processing time to evaluate an individual. The quan-
tities t and tslow are defined to be the sum of tcomp and tcomm for fast and slow
processors, respectively. As with the homogeneous case, the tasks on a heteroge-
neous system can be laid out in blocks, where in this case each block is of width
tslow. Figure 5 shows GA tasks on a heterogeneous system with a single slow
processor and f equal to 4. As depicted in the figure, for an SDGA, the presence
of a slow processor clearly leaves idle a large number of faster processors.

The number of blocks in a generation can be estimated as:

nb = d P

f(N − ns) + ns
e (4)

Depending on the ordering of tasks, the number of tasks that remain at the end
of generation becomes important. The number present in the final block of a
generation (δ1) can be estimated as:

δ1 = P − (nb − 1) (f(N − n) + n) (5)

If there are more tasks in the last block than fast processors, the slow processors
will receive tasks to evaluate. Taking these factors into account, the total time
taken by an SDGA can be estimated as:

Tsync =

{
(nb − 1)f t G + t G if δ1 ≤ (N − ns)
nb t f G otherwise

(6)

Lecture Notes in Computer Science 9

2
3

1
P

ro
ce

ss
or

s

N−1
slow

Block 1

slowt

t

Fig. 5. GA Tasks Executing on Heterogeneous Processors

Since end-of-generation synchronizations are eliminated in an ADGA, the overall
GA execution can be thought of as an ordering of PG tasks among processors.
The number of blocks is estimated as:

nb = d PG

f(N − ns) + ns
e (7)

At the end of the GA execution, if the last block contains more tasks than
the number of fast processors, the slow processors will be involved in the final
computations. The number of tasks present in the final block of GA execution
(δ2) can be estimated as:

δ2 = PG− (nb − 1) (f(N − ns) + ns) (8)

The estimated time taken by an ADGA is:

Tasync =

{
(nb − 1)ft + t if δ2 ≤ (N − ns)
nb t f otherwise

(9)

4.3 0/1 Knapsack Problem

The 0/1 knapsack problem is representative of the large class of problems known
as combinatorial optimization problems. Informally stated, the objective of the
knapsack problem is to select items that maximize profit without exceeding
capacity. As such, the problem is fine grained since fitness evaluation is typically
inexpensive.

Both SDGA and ADGA implementations are applied to the 0/1 knapsack
problem with anywhere from 3 to 30 processors. To assess their scalability with

10 John Baugh and Sujay Kumar

increased problem size, fitness evaluation times are artificially varied to achieve
four different levels of granularity based on the ratio of tcomp to tcomm. Since
tcomm is approximately 250 milliseconds in our set up, tcomp times are artifi-
cially set to 250, 500, 750 and 1000 milliseconds, resulting in granularity factors
of 1 through 4. To simulate a heterogeneous system, a slow processor is intro-
duced with f set to 5. GA runs conducted with a population size of 100 for
200 generations yield the results shown in Figure 6. Although tcomp and tcomm

are underpredicted in the model, the trends are as expected, with execution
times increasing with problem granularity, and the ADGA scaling better than
the SDGA.

1000

1500

2000

2500

3000

3500

4000

4500

0 1 2 3 4 5

E
xe

cu
tio

n
T

im
e

(s
ec

on
ds

)

Granularity Level

Predicted
SDGA
ADGA

Actual
SDGA
ADGA

Fig. 6. Execution Time vs. Granularity using 15 Processors: 0/1 Knapsack Problem

4.4 Air Quality Optimization

Tropospheric ozone formed from the emissions of vehicles and industrial sources
is considered a major pollutant. As a result, air quality management strategies
may be necessary for geographic regions containing hundreds of sources, with
each in turn having thousands of processes. Formal search strategies using GAs
can be applied to find cost-effective ways of reducing ozone formation. For in-
stance, an ambient least cost (ALC) model [2] is an optimization approach that
incorporates source marginal control costs and emission dispersion characteris-
tics to compute the source emissions at the least cost. A number of modeling
techniques can be used to determine dispersion characteristics, such as the Em-
pirical Kinetic Modeling Approach (EKMA), a Lagrangian box model that is

Lecture Notes in Computer Science 11

used in this study. Because of the execution times typically required for EKMA,
this GA formulation is somewhat coarse grained.

Experiments for an air quality management study around Charlotte, NC,
were conducted on a network of workstations with as many as 19 processors. To
simulate a heterogeneous system, a slow processor with an f factor of 5 is used.
In each case, the GA was run for 50 generations using a population size of 50.
The execution times are found to be in close agreement with the values predicted
by the empirical model, as shown in Figure 7. Better agreement here than in
the knapsack problem is likely due to increased problem granularity. Similar to
earlier trends, the SDGA is outperformed by the ADGA; the execution times of
the SDGA follow a step function pattern implying that, in between each step,
there is no marginal benefit in using additional processors.

4 6 8 10 12 14 16 18
0

5

6

7

8

4

3

2

1

Actual

Predicted

2

Number of Processors

E
xe

cu
tio

n
T

im
e

(h
ou

rs
)

SDGA

SDGA

 ADGA

 ADGA

Fig. 7. Execution Time vs. Processors: Air Quality Optimization

5 Final Remarks

The growing acceptance of GAs has led to widespread use and attempts at solv-
ing larger and more challenging problems. A practical approach for doing so may
rest on the ability to use available computer resources efficiently. Motivating the
algorithmic developments in this paper is the expectation that a heterogeneous
collection of personal computers, workstations, and laptops should be able to
contribute their cycles to the solution of substantial problems without inad-
vertently detracting from overall performance. Removing the end-of-generation

12 John Baugh and Sujay Kumar

synchronization points from global parallel GAs is necessary to meet this expec-
tation. The application of loop unrolling and dataflow modeling described herein
has been shown to be effective in keeping available processors from idling even
when substantial variations exist in the processors’ capabilities.

Although other asynchronous approaches might be used, one that is func-
tionally equivalent to a simple, sequential GA offers real benefits with respect to
parameter tuning. In a significant study on air quality management [references
temporarily withheld for blind review process], our research team was able to
move with little effort between atmospheric models that varied widely in their
computational demands — from simple ones that can be solved using sequential
GAs, to ones that require 20 minutes to evaluate a single individual on a high-
end workstation: the same basic algorithm and parameters could be (and were)
used in either case.

The GA implementations described in this paper are part of Vitri, an object-
oriented framework implemented in Java for high-performance distributed com-
puting [references temporarily withheld for blind review process]. Among its fea-
tures are basic support for distributed computing and communication, as well
as visual tools for evaluating run-time performance, and modules for heuristic
optimization. It balances loads dynamically using a client-side task pool, allows
the addition or removal of servers during a run, and provides fault tolerance
transparently for servers and networks.

References

1. Arvind and D. E. Culler. Dataflow architectures. Annual Reviews in Computer
Science, 1:225–253, 1986.

2. S. E. Atkinson and D. H. Lewis. A cost-effective analysis of alternative air quality
control strategies. Journal of Environmental Economics, pages 237–250, 1974.

3. E. Cantu-Paz. Designing efficient master-slave parallel genetic algorithms. Tech-
nical report, University of Illinois at Urbana-Champaign, Urbana, IL, 1997.

4. E. Cantu-Paz. A survey of parallel genetic algorithms. Technical Report 97003,
University of Illinois at Urbana Champaign, May 1997.

5. V. Coleman. The DEME mode: An asynchronous genetic algorithm. Technical
Report UM-CS-1989-033, University of Massachusetts, May 1989.

6. Computer. Special issue on data flow systems. 15(2), 1982.
7. J. Kim and P. Zeigler. A framework for multiresolution optimization in a paral-

lel/distributed environment: Simulation of hierarchical GAs. Journal of Parallel
and Distributed Computing, 32:90–102, 1996.

8. Yu-Kwong Kwok and Ahmad Ishfaq. Efficient scheduling of arbitrary task graphs
to multiprocessors using a parallel genetic algorithm. Journal of Parallel and
Distributed Computing, 47:58–77, 1997.

9. M. G. Schleuter. Asparagas: An asynchronous parallel genetic optimization strat-
egy. Proceedings of the Third International Conference on Genetic Algorithms,
pages 422–427, 1989.

10. J. E. Smith and T. C. Fogarty. Self adaptation of mutation rates in a steady state
genetic algorithm. In Proceedings of IEEE International Conference on Evolution-
ary Computing, volume 72, pages 318–323, 1999.

