
The Journal of Systems & Software 201 (2023) 111675

M
a

b

c

d

p
e
a
m
2
s
w
c
d
a
K
B
v
A
a
s
M

h
0

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

Automaticmodelling and verification ofAutosar architectures✩

iaomiao Zhang a, Yu Teng a, Hui Kong b, John Baugh c, Yu Su a, Junri Mi d, Bowen Du a,∗

School of Software Engineering, Tongji University, 200092, China
Huawei Corporation, 200000, China
Department of Civil, Construction, and Environmental Engineering, North Carolina State University, NC 27695, USA
Alibaba Corporation, 310000, China

a r t i c l e i n f o

Article history:
Received 4 September 2022
Received in revised form 4 January 2023
Accepted 7 March 2023
Available online 11 March 2023

Keywords:
Vehicle electronic system
Autosar
Formal modelling
Timed automata
Verification

a b s t r a c t

Autosar (AUTomotive Open System ARchitecture) is a development partnership whose primary goal
is the standardization of basic system functions and functional interfaces for electronic control units in
automobiles. As an open specification, its layered software architecture promotes the interoperability
of real-time embedded vehicle systems and components. It also opens up the possibility of formal
modelling and verification approaches, centred around the specification, that can be used to support
analysis in the early stages of design. In this paper, we describe a methodology and associated tool,
called A2A, that automatically models systems defined by the Autosar specifications as timed au-
tomata, and then verifies their timing properties using Uppaal. It contains 22 groups of timed automata
templates, together with two auxiliary test templates, that model the Autosar architecture and timing
properties, allowing time-related behaviours to be extracted from the three-layer architecture, i.e.,
the Autosar Software, Autosar Runtime Environment, and Basic Software layers, and templates to
be automatically instantiated. The timing properties are specified using timed computation tree logic
(TCTL) in Uppaal to verify the system model. We demonstrate the capabilities of the methodology by
applying it to an Autosar architecture that describes an internal vehicle light control system, thereby
showing its effectiveness.

© 2023 Elsevier Inc. All rights reserved.
1. Introduction

Automobile manufacturers continue to incorporate new safety,
erformance, and entertainment features in modern vehicle
lectronics—with thousands of chips, millions of lines of code,
nd more than a hundred electronic control units (ECUs) found in
any of today’s cars (Sheng et al., 2015; Charette, 2021; Gu et al.,
016; Alam et al., 2019; Alladi et al., 2020). Writing real-time
oftware components to control ECUs, and ensuring that they
ork together cooperatively and reliably, is therefore a growing
hallenge. To address this concern, the Autosar specification
efines a standard architecture for interoperability that includes
pplication interfaces and basic software modules (Yamili and
athiresh, 2021; Fürst et al., 2009; Fennel et al., 2006; Fürst and
echter, 2016), which can be used to develop real-time embedded
ehicle systems. As a result, software developed according to the
utosar standard can operate across a range of different vehicles
nd ECUs, saving resources and improving the reusability of the
oftware (Menard et al., 2020; Kotur et al., 2020; Jelecevic and
inh, 2019; Garcia and Olmedo, 2020).

✩ Editor: Earl Barr.
∗ Corresponding author.

E-mail address: bowendu@tongji.edu.cn (B. Du).
ttps://doi.org/10.1016/j.jss.2023.111675
164-1212/© 2023 Elsevier Inc. All rights reserved.
Although Autosar defines a standard software architecture for
programming ECUs, its use alone cannot guarantee that software
developed within its framework is safe and free of defects (Nasser
and Ma, 2019; Piper et al., 2015; Tucci-Piergiovanni et al., 2011).
Attention to the correctness concerns raised by increasingly com-
plex and interrelated functions in vehicle systems is still nec-
essary to ensure personal safety and minimize the likelihood
of property loss (Luong et al., 2017; Zhang et al., 2019). As a
result, the behaviours of Autosar software must be analysed and
verified to guarantee that vehicle ECUs perform their intended
functions safely and correctly.

Analysis tools like SystemDesk provide simulation capabilities
to test Autosar software and promote correctness (Neumann
et al., 2012). However, the tool does not support the analysis
of non-functional properties like timing, and because it is based
on simulation, it is unsuitable for finding corner cases or er-
rors early in the development process (Beringer and Wehrheim,
2016; Sarikhada and Shah, 2020). In principle, verification during
the development phase can nevertheless incorporate timing at-
tributes as well, potentially reducing costs and improving safety.
These benefits can be achieved through formal modelling and
analysis of Autosar components in the early phases of develop-
ment. Examples of doing so include the coarse-grained modelling
of tasks and so-called RunnableEntities, which we later describe,

https://doi.org/10.1016/j.jss.2023.111675
https://www.elsevier.com/locate/jss
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2023.111675&domain=pdf
mailto:bowendu@tongji.edu.cn
https://doi.org/10.1016/j.jss.2023.111675


M. Zhang, Y. Teng, H. Kong et al. The Journal of Systems & Software 201 (2023) 111675

i
v
W
t
a
t
s

i
a
i
D
m
h
t
U
o
s
F
u
c

t
t
c
u
o
s
A
s
t
w

s
t
w
R

s
c
l

n the Basic Software layer and the Autosar Software layer to
erify the timing attributes (Neumann et al., 2012; Beringer and
ehrheim, 2016). Other aspects, however, including communica-

ion, execution order, different task types (periodic and sporadic),
nd different scheduling strategies (preemptive and non preemp-
ive) are as yet unincorporated in our study, and remain the
ubject of future work.
In this paper, we propose a methodology that can automat-

cally convert the Autosar architecture, from top to bottom in
fine-grained manner, into a series of timed automata and ver-

fy whether the timing constraints are satisfied using Uppaal.
ue to the complexity of the Autosar architecture, modelling it
anually is both cumbersome and error-prone. As a result, we
ave developed a tool called A2A that can automatically perform
he modelling process and verify the timing properties using
ppaal. Therefore, developers of Autosar software can make use
f this methodology to ensure that their implementations of ECU
oftware meet the required timing constraints that are specified.
inally, as a case study, we show how the methodology can be
sed to verify the timing constraints of an internal vehicle light
ontrol system.
The main contributions we report in the paper are as follows:

• First, a tool A2A is developed to automatically extract the
configuration information (scenarios and parameters, de-
tailed in Section 4) of time-related behaviours from the
Autosar architecture conforming to an arXML description.

• Second, an algorithm is proposed to automatically construct
time-related behaviours of the Autosar architecture into an
interconnected series of timed automata by A2A. That is, we
provide a set of timed automata templates1 to characterize
behaviours and add them to the library of A2A. Then, the
A2A tool instantiates the timed automata templates based
on the extracted configuration information to automate the
entire modelling process. The generated timed automata
can work collaboratively to realize the dynamic interac-
tive behaviours of the Autosar architecture following the
Autosar specification.

• Third, a verification approach based on the generated in-
terconnected timed automata is presented. To verify the
timing constraints more conveniently, we first construct
a series of auxiliary timed automata test templates1 ac-
cording to the definitions of the timing constraints in the
Autosar specification. All templates are added to the tool
library of A2A. The A2A tool then collects timing constraint
information from the user and instantiates timed automata
test templates according to the specified constraint infor-
mation automatically. According to the specified constraint
information, the timing constraints will be described by
the timed computation tree (TCTL) language and verified in
Uppaal.

• Finally, the Autosar architecture of an internal vehicle light
control system is modelled and verified to demonstrate
performance evaluations and show the effectiveness of the
proposed methodology.

The remainder of the paper is organized as follows. In Sec-
ion 2, the system architecture of Autosar and the verification
ool Uppaal (Behrmann et al., 2004, 2006) are described. We
haracterize related work in Section 3. The overall methodology
ndertaken in this study is introduced in Section 4. The extraction
f configuration information from the Autosar architecture is de-
cribed in Section 5. The method of automatically modelling the
utosar architecture is presented in Section 6, and Section 7 de-
cribes the verification of timing constraints. The performance of
he proposed methodology is demonstrated in Section 8. Finally,
e conclude the paper in Section 9.

1 https://github.com/Tongji-lab/Autosar/tree/main/AutosarTemplates
2

Fig. 1. The Autosar layered architecture.

2. Background

2.1. Autosar

Autosar is an open and standardized software architecture
for automotive ECUs. As shown in Fig. 1, it consists of three
layers, from top to bottom: Autosar Software, Autosar Runtime
Environment (RTE), and Basic Software (Anon, 2021).

The Autosar Software layer contains the actual control soft-
ware, which is constructed in the form of software components.
Autosar software components can be further divided into the
atomic software component, the composition software compo-
nent, and the parameter software component (Anon, 2021). Of
these, the atomic software component cannot be structurally
decomposed but can integrate the internal behaviours of the
software. The composition software component, in contrast, can
aggregate existing software components by composing them in
a connector. In addition, the parameter software component
provides calibration parameters in other software components,
which does not influence the time-related behaviours and is not
considered in this work.

Within an atomic software component, the RunnableEntity
associated with the implementation realizes the behaviours of the
component. In addition, each software component communicates
with other software components through its ports. Each pair of
ports that communicates is connected through a composition
component. The communication paradigms between software
components include the following:

• Sender–receiver communication is used to realize data
transmission among the software components.

• Client–server communication is when a client RunnableEn-
tity invokes a server RunnableEntity to execute an operation.

• Trigger event communication is when one RunnableEntity
triggers another RunnableEntity.

The RTE controls communication between the ports of two
oftware components in the Autosar Software layer. In addition,
he RTE also manages the cooperation between the Autosar Soft-
are and Basic Software layers (Anon, 2021). For example, the
TE is responsible for mapping the RunnableEntities to tasks.
The fundamental role of the Basic Software layer is its respon-

ibility for managing the hardware resources and the provision of
ommon sources for the application software. The Basic Software
ayer provides services, e.g., in the form of drivers, for accessing

https://github.com/Tongji-lab/Autosar/tree/main/AutosarTemplates


M. Zhang, Y. Teng, H. Kong et al. The Journal of Systems & Software 201 (2023) 111675

P
A

2

t
s

a
e
a
A

e
L
b
a
W
f
c
w
o
t
o

s
u
a
r
c
s
c
o
b
t
U
w
i
t

i
r
c
t
S
q
2

3

b
a
s

m
c

Fig. 2. Three RunnableEntities mapped onto one task.

the hardware as well as the operating system (OS) function-
alities (Yamili and Kathiresh, 2021; Anon, 2021). Here, the OS
mainly contains the alarm, the task, and the scheduler (Anon,
2021). Among them, the alarm is responsible for periodically
activating tasks. In addition, the scheduler controls the running
of the task according to the scheduling strategy. For the task, it
implements the RunnableEntities mapped onto it. Fig. 2 shows
a case where three RunnableEntities map onto one task, Task 1.
Each RunnableEntity mapped onto Task 1 has a specific position.
If more than one RunnableEntity needs to be executed, they will
be executed in the order of their positions in Task 1.

A high-level overview of the collaborative work between the
Autosar Software and Basic Software layers can also be seen
in Fig. 1. There is a RunnableEntity a in software component
A, and another RunnableEntity b in software component B. The
RunnableEntity a is mapped onto a periodic task, Task 1, and
the RunnableEntity b is mapped onto a sporadic task, Task 2. To
realize the periodic invocation from a to b, the entire process
consists of the following steps:

1. The alarm records the time and activates Task 1 periodi-
cally. After Task 1 is activated, it waits to be scheduled by
the scheduler.

2. When the scheduler schedules Task 1, Task 1 starts to run.
3. Task 1 starts the RunnableEntity a according to the position

of the RunnableEntity a mapped on it.
4. The RunnableEntity a can inform the RTE to invoke the

RunnableEntity b.
5. The RTE receives the information and then activates the

RunnableEntity b.
6. Task 2, containing the RunnableEntity b, is activated.
7. When Task 2 is scheduled by the scheduler, it starts to run.
8. Task 2 starts the RunnableEntity b according to the position

of the RunnableEntity b mapped on it.

The configuration information from the Autosar Software
layer, the RTE layer, and the Basic Software layer is saved in an
arXML source file. Therefore, this arXML source file is the starting
point of our work, and so we make use of the Autosar Tool
latform (Artop) (Voget, 2010) to parse arXML source files of the
utosar architecture.

.2. Uppaal

We model and analyse the time-related behaviours of the Au-
osar architecture using Uppaal, a toolbox for verifying real-time
ystems modelled as networks of timed automata.
A timed automaton is a finite automaton—a graph containing
finite set of nodes or locations and a finite set of labelled

dges—extended with real-valued variables. Formally, a timed
utomaton (Bengtsson and Yi, 2003; Alur and Dill, 1994) is a tuple
= (L, l0, X, Σ, E, I), where

• L is a set of locations,
• l ∈ L is the initial location,
0

3

Fig. 3. A timed automaton with stopwatches (Yan et al., 2018). (a) Timed
automaton with stopwatches. (b) Simulation.

• X is a set of clocks and Φ(X) (like x ≤ 10) represents the set
of clock constraints,

• Σ is a set of actions,
• E ⊆ L×Σ×Φ(X)×2X

×L is a set of edges between locations
with an action, a guard and a set of clocks to be reset, and

• I : L → Φ(X) assigns invariants to locations.

In addition, we also employ stopwatch automata (SWA), an
xtension that adds stopwatches to timed automata (Cassez and
arsen, 2000). In timed automata with stopwatches, clocks can
e assigned to a rate of zero or one in a location. When a clock is
ssigned to rate zero, it freezes and keeps time from advancing.
hen the clock is assigned to rate one, it resumes from the last

rozen point. The model in Fig. 3 (a) is a timed automaton using a
lock x to enforce the switch between two locations off and on,
here off is the initial location. A stopwatch y, which is running
nly in location on, is introduced to measure the accumulated
ime in on. Therefore, the value of y is left unchanged in location
ff, as shown in Fig. 3 (b) (Yan et al., 2018).
The Uppaal modelling language extends timed automata with

ome additional features. For example, the automata synchronize
sing channels declared as c. In this case, an edge labelled c! is
sender, and another edge labelled c? is a receiver. If multiple

eceivers can respond to a sender in the current state, one re-
eiver is chosen non-deterministically to communicate with the
ender. Asynchronous communication is achieved using broad-
ast channels. In this case, a sender can communicate with zero,
ne, or multiple receivers. Therefore, broadcast sending is never
locked, and any receiver that can respond to the sender in
he current state must communicate. In addition, for locations,
ppaal supports urgent locations and committed locations, in
hich no delay is allowed. Furthermore, if a timed automaton is

n a committed location, represented by © in Uppaal, the only
ransitions permitted are those from the committed location.

To verify that a model satisfies a property, a requirement spec-
fication is expressed in a formally well-defined and machine-
eadable language. Uppaal uses a simplified version of timed
omputation tree logic (TCTL) as the query language. In TCTL,
he query language consists of path formulae and state formulae.
tate formulae describe individual states, whereas path formulae
uantify over paths or traces of the model (Behrmann et al.,
004).

. Related work

Research on Autosar properties and timing characteristics
roadly falls within two categories: (1) modelling and informal
nalysis of time-related behaviours, and (2) formal verification of
pecific properties.
In the first category, numerous projects have focused on the

odelling of time-related behaviours and the analysis of exe-
ution time and schedulability. Such studies have included, for



M. Zhang, Y. Teng, H. Kong et al. The Journal of Systems & Software 201 (2023) 111675

i
e
n
A
c
T
t
s
d
d
b
t
t
e
R
t
t
r
i
t
e
t

h
s
t
o
o
s
e
o
m
t
m
c
l
m
p
W
A
e
g
R
a
t
t
w

4

4

A
f
h
c
A
a
d

A
s
i
s
S

nstance, the use of modelling languages like Simulink (Chen
t al., 2018), as well as discrete-event system specifications (De-
il et al., 2017), where a simulation model is constructed for
utosar-based electronic control units that are connected by a
ommunication bus. In other work (Klobedanz et al., 2010), the
iming Augmented Description Language (TADL) is applied to
iming modelling and analysis in a case study on speed-adaptive
teer-by-wire systems. A substantial amount of work has ad-
ressed task schedulability. One such study (Anssi et al., 2011)
escribes basic features of an analyzable Autosar model required
y scheduling analysis. Zhao et al. (2017) present design op-
imization approaches for Autosar models with preemption
hresholds and mixed-criticality scheduling. Other studies (Copic
t al., 2020; Stegmeier et al., 2017) describe the mapping mode of
unnableEntities and the parallelism of RunnableEntities needed
o shorten worst-case execution times. Yan and Guo (2019) use
ransition graphs to model schedule tables and propose an algo-
ithm to analyse schedulability by checking all schedule scenar-
os. Safety and progress guarantees, such as deadlock checking,
he satisfaction of latency time constraints (LTCs), and periodic
vent triggering constraints (PETCs) (Anon, 2021), are outside of
he scope of these studies.

In the second category, formal verification, several methods
ave been proposed to verify timing constraints and guarantee
afety. Zhu et al. (2013) focus on the timing properties of Au-
osar and propose an automatic verification framework based
n rewriting logic to analyse the timing behaviours, though it
nly concerns about the reduced OS. One study Choi (2018)
uggests a pattern-based framework that can be used to gen-
rate configurable formal OS and test models. However, it also
nly considers OS. Another study Yan et al. (2018) presents a
ethod for checking safety-critical autonomous control systems

hat can tolerate transient faults, where a three-layer system
odel is given using timed automata, so that system behaviours
an be evaluated. Nevertheless, it does not consider the RTE
ayer, and it simplifies the diverse and complex communication
echanisms in Autosar software instead of modelling message
assing between tasks. Neumann et al. (2012) and Beringer and
ehrheim (2016) model timed automata for three layers of the
utosar architecture and determine best-case and worst-case ex-
cution times (BCET and WCET), though they do not discuss fine-
rained modelling of the communication behaviours between
unnableEntities and preemptive scheduling strategy, potentially
ffecting the verification results. Not addressed in these studies is
he automatic transformation from a standard arXML document
o formal models, though Neumann et al. (2012) mention it
ithout offering details.

. Methodology

.1. Time-related behaviours considered

In this work, we consider various time-related behaviours in
utosar architectures. Because different scenarios lead to dif-
erent time-related behaviours, we consider the time-related be-
aviours within each scenario. For instance, there are different
ommunication scenarios between software components in the
utosar Software, such as different ways to invoke the server,
nd different scheduling scenarios in the Basic Software, such as
ifferent scheduling strategies.
As shown in Fig. 4, we consider 22 scenarios in total from the

utosar Software, Autosar Runtime Environment (RTE), and Ba-
ic Software layers. In the Autosar Software layer, eight scenarios
n three communication paradigms are considered, including four
cenarios that involve client–server communication. For instance,
cenario (5) is the case in which a server RunnableEntity runs
4

non-concurrently, and a client RunnableEntity synchronously in-
vokes the server RunnableEntity running non-concurrently with
a timeout monitoring mechanism. In addition, there are ten sce-
narios for the RTE to control the communication. For instance,
to maintain sender–receiver communication, seven scenarios are
distinguished that handle three different data transmission meth-
ods. In the Basic Software layer, additional scenarios are con-
sidered, including preemptive and non preemptive scheduling
strategies, and both periodic and sporadic tasks.

4.2. Process of the proposed methodology

Our overall workflow of the methodology, which automati-
cally models and then verifies the Autosar architecture, is shown
in Fig. 5. The steps are as follows:

1. Because the scenarios contained in the Autosar archi-
tecture are defined in an arXML source file, a tool we
developed called A2A, written in Java, extracts the sce-
narios and parameters from a given arXML source file
of the Autosar architecture automatically. Within each
scenario, parameters are extracted that characterize, quan-
titatively, the various time-related behaviours and depen-
dencies, such as the length of the queue storing data, the
period of each task and the timeout value. The arXML
source file, before it is input to the A2A tool, is parsed by a
software development toolkit (SDK) in the Artop.

2. An arXML source file normally consists of a number of
scenarios, whose main behaviours are illustrated in the
Autosar specification (Anon, 2021). Therefore, for each
scenario, according to the specification, we need to con-
struct several timed automata templates to describe the
scenario. The number of templates for each scenario is
given in Fig. 4. All of the constructed timed automata
templates are added to the tool library of A2A.

3. The A2A tool selects the timed automata templates built
for the extracted scenarios. Then, the execution time in-
formation specified by the user is collected. Finally, A2A
instantiates the selected timed automata templates ac-
cording to the extracted parameters and execution time
information.

4. Based on explanations of the timing constraints in the
Autosar specification, auxiliary timed automata test tem-
plates are constructed for verifying the timing constraints
and also added to the tool library.

5. According to the extracted scenarios and parameters, A2A
collects timing constraints from the user. A2A automati-
cally instantiates timed automata test templates according
to the collected timing constraints information.

6. Finally, users can perform TCTL queries in Uppaal to deter-
mine whether timing constraints are satisfied by the timed
automata of the Autosar architecture.

When a preemptive strategy or wait point appears in arXML
files, we employ stopwatch automata to model the correspond-
ing Autosar architecture, which may lead to inconclusive re-
sults in some situations: for verification, an over-approximation
technique is chosen to check safety properties, which state that
something bad never happens (Behrmann et al., 2004). Therefore,
if the result of performing a check is ‘yes’, we can be certain the
architecture meets its timing constraints. However, if the result is
‘no’, the result is inconclusive, since the over-approximation itself
may have introduced extra states that do not actually exist in the
real architecture. In other words, a check showing that timing re-
quirements are met is always conclusive, but for a negative result,
in cases where stopwatch automata are employed and timing



M. Zhang, Y. Teng, H. Kong et al. The Journal of Systems & Software 201 (2023) 111675

r
b
i

S
t
s
i

Fig. 4. Considered scenarios of time-related behaviours in Autosar architecture.
equirements appear not to have been met, further scrutiny may
e required to determine whether the counterexample produced
s valid.

In experiments we have performed, such as those described in
ection 8, the frequency of such inconclusive results varies with
iming constraints and parameters in the Autosar architecture,
uch as the execution time of RunnableEntities. When the result
s inconclusive, one should carefully examine the counterexample
5

given by the model-checking tool or adjust the scenarios or
parameters of the architecture to get a ‘yes’ result. Alternatively,
developers and researchers may work together to extend data
structures of difference bounded matrices (DBMs) to encode ex-
actly a stopwatch automaton and to perform an exact reachability
analysis (Cassez and Larsen, 2000). Here, DBMs offer canonical
representations for constraint systems and a DBM representation
is in fact a weighted directed graph where the vertices correspond



M. Zhang, Y. Teng, H. Kong et al. The Journal of Systems & Software 201 (2023) 111675

c
s

5

i

Fig. 5. The process of the proposed methodology.
to clocks and the weights on the edges stand for the bounds on
the differences between pairs of clocks (Larsen et al., 1997).

To put into context the role of over-approximation techniques,
it is worth noting that they are used only when stopwatch au-
tomata are present. That is, if the scheduling strategy is non-
preemptive and no wait points are involved in an Autosar ar-
hitecture, the verification results are always conclusive, since no
topwatch automata are used.

. Extracting scenarios and parameters

In this step, according to the names and meanings of labels
n the arXML source file defined by the Autosar specification,
pertinent labels for scenarios and parameters have been obtained
and encoded in the A2A tool.
...
<SENSOR-ACTUATOR -SW-COMPONENT -TYPE>

<SHORT-NAME>ClientSWC</SHORT-NAME>
<PORTS>

<R-PORT-PROTOTYPE>
<SHORT-NAME>ClientPort</SHORT-NAME>
<REQUIRED -COM-SPECS>

<CLIENT-COM-SPEC>
<OPERATION -REF DEST= " CLIENT-SERVER-OPERATION " >.../

Operation
</OPERATION -REF>

</CLIENT-COM-SPEC>
</REQUIRED -COM-SPECS>
<REQUIRED -INTERFACE -TREF
DEST= " CLIENT-SERVER-INTERFACE " >.../CSInterface</REQUIRED -

INTERFACE -TREF>
6

...
<RUNNABLE -ENTITY>

<SHORT-NAME>ClientRunnableEntity</SHORT-NAME>
<SERVER-CALL-POINTS>

<SYNCHRONOUS -SERVER-CALL-POINT>
<SHORT-NAME>ClientCallPoint</SHORT-NAME>
<OPERATION -IREF>

<CONTEXT-R-PORT-REF DEST= " R-PORT-PROTOTYPE " >
.../ClientPort</CONTEXT-R-PORT-REF>

<TARGET-REQUIRED -OPERATION -REF
DEST= " CLIENT-SERVER-OPERATION " >

.../Operation</TARGET-REQUIRED -OPERATION -REF>
</OPERATION -IREF>
<TIMEOUT>0.001</TIMEOUT>

...
<COMPOSITION -SW-COMPONENT -TYPE>

<SHORT-NAME>Composition</SHORT-NAME>
<COMPONENTS>

<SW-COMPONENT -PROTOTYPE>
<SHORT-NAME>ClientSWCinComposition</SHORT-NAME>
<TYPE-TREF DEST= " SENSOR-ACTUATOR -SW-COMPONENT -TYPE " >.../

ClientSWC
</TYPE-TREF>

</SW-COMPONENT -PROTOTYPE>
<SW-COMPONENT -PROTOTYPE>

<SHORT-NAME>ServerSWCinComposition</SHORT-NAME>
<TYPE-TREF DEST= " SERVICE-SW-COMPONENT -TYPE " >.../ServerSWC</

TYPE-TREF>
</SW-COMPONENT -PROTOTYPE>

</COMPONENTS>
<CONNECTORS>

<ASSEMBLY -SW-CONNECTOR>
<SHORT-NAME>Connector1</SHORT-NAME>
<PROVIDER -IREF>

<CONTEXT-COMPONENT -REF DEST= " SW-COMPONENT -PROTOTYPE " >
.../ServerSWCinComposition</CONTEXT-COMPONENT -REF>

<TARGET-P-PORT-REF DEST= " P-PORT-PROTOTYPE " >.../ServerPort
</TARGET-P-PORT-REF>

</PROVIDER -IREF>
<REQUESTER -IREF>

<CONTEXT-COMPONENT -REF DEST= " SW-COMPONENT -PROTOTYPE " >
.../ClientSWCinComposition</CONTEXT-COMPONENT -REF>



M. Zhang, Y. Teng, H. Kong et al. The Journal of Systems & Software 201 (2023) 111675

t
f
f
a
p

F
b
p
p
t
l

t

s
o
t

B
R
b
a
t
t
a

6

c
a
a
t
t
p

6

o
s

<TARGET-R-PORT-REF DEST= " R-PORT-PROTOTYPE " >.../ClientPort
</TARGET-R-PORT-REF>

...
<SERVICE-SW-COMPONENT -TYPE>

<SHORT-NAME>ServerSWC</SHORT-NAME>
<PORTS>

<P-PORT-PROTOTYPE>
<SHORT-NAME>ServerPort</SHORT-NAME>
<PROVIDED -COM-SPECS>

<SERVER-COM-SPEC>
<OPERATION -REF DEST= " CLIENT-SERVER-OPERATION " >.../

Operation
</OPERATION -REF>
<QUEUE-LENGTH>1</QUEUE-LENGTH>

</SERVER-COM-SPEC>
</PROVIDED -COM-SPECS>
<PROVIDED -INTERFACE -TREF DEST= " CLIENT-SERVER-INTERFACE " >
.../CSInterface</PROVIDED -INTERFACE -TREF>

...
<OPERATION -INVOKED-EVENT>

<SHORT-NAME>OIEvent</SHORT-NAME>
<START-ON-EVENT-REF DEST= " RUNNABLE -ENTITY " >

.../ServerRunnableEntity</START-ON-EVENT-REF>
<OPERATION -IREF>

<CONTEXT-P-PORT-REF DEST= " P-PORT-PROTOTYPE " >
.../ServerPort</CONTEXT-P-PORT-REF>
<TARGET-PROVIDED -OPERATION -REF
DEST= " CLIENT-SERVER-OPERATION " >

.../Operation</TARGET-PROVIDED -OPERATION -REF>
...

<RUNNABLE -ENTITY>
<SHORT-NAME>ServerRunnableEntity</SHORT-NAME>
<CAN-BE-INVOKED-CONCURRENTLY>false

...
<CLIENT-SERVER-INTERFACE>

<SHORT-NAME>CSInterface</SHORT-NAME>
<OPERATIONS>

<CLIENT-SERVER-OPERATION>
<SHORT-NAME>Operation</SHORT-NAME>

...

Listing 1: The Autosar Software layer of an arXML source file.

A2A takes the arXML source file as input, and uses Artop’s SDK
o parse and identify the arXML source file. Listing 1 shows a
ragment, that is, the Autosar Software layer of an arXML source
ile, which includes three layers from the Autosar architecture,
nd Fig. 6 shows a portion of the result of the file after being
arsed.
After being parsed, the values of selected labels are extracted.

ig. 7 shows a flow extraction procedure starting from the Assem-
lySwConnector, which signifies a connector, and allows a pair of
orts communicating with each other to be extracted. For each
ort, the RequiredInterface and ProvidedInterface labels are ex-
racted to determine the communication paradigm. Then, labels

ike SynchronousServerCallPoint and CanBeInvokedConcurrently are a

7

extracted to determine the scenario of the invocation in client–
server communication. Parameters that determine quantitative
behaviours are also extracted, such as Timeout, indicating a time
limit on the communication.

Fig. 8 shows the flow of extracting scenarios and parameters
from the Autosar Software layer of Fig. 6. According to Connec-
or1, a pair of ports ClientPort and ServerPort communicating
with each other is found. Then, the CSInterface determines the
communication paradigm between the two ports to be client–
server communication. In addition, ClientCallPoint signifies a
ynchronous invocation method and a configured timeout value
f 0.001 seconds. In other words, the classification is determined
o be Scenario (5), as previously shown in Fig. 4.

From there, further information extracted from the RTE and
asic Software layers includes the mapping relationship between
unnableEntities and tasks from the RteEventToTaskMapping la-
el. In the Basic Software layer, the OsAlarm label indicates which
larm activates the task, and the OsTaskSchedule label specifies
he scheduling scenario, preemptive or non preemptive. Parame-
ers like OsTaskPriority, representing the priority of the task, are
lso acquired.

. Modelling the Autosar Architecture

In this section, we describe our approach for automatically
onstructing time-related behaviours in the Autosar architecture
s a timed automata network. We begin by explaining the timed
utomata templates built for each scenario, and then show how
imed automata templates are automatically selected and instan-
iated for each scenario according to the extracted scenarios,
arameters, and the specified execution time information.

.1. Timed automata templates

The Autosar specification clearly defines the main behaviours
f the different layers of the Autosar architecture in different
cenarios. However, some detailed aspects can be customized

ccording to the various needs of the manufacturers. Based on
Fig. 6. The result of the arXML source file (Listing 1) parsed by Artop.



M. Zhang, Y. Teng, H. Kong et al. The Journal of Systems & Software 201 (2023) 111675

s

t
t
a
o
t
a
d
m
A
d
t
s
c
w

6

m
f
t

H

t
t
r
s
t
S

t
a
d
a
a
R
I
s
c
e
a
i
S

a
d
p
S
n
R

b
v

6

g
b
s
a
c
‘
a
r

o
n
f
t
s
t
i

Fig. 7. Flow of scenarios and parameters extraction from a parsed arXML source
file.

Fig. 8. Flow of scenarios and parameters extraction from the parsed arXML
ource file (Fig. 6).

he Autosar specification, timed automata templates for the Au-
osar Software, RTE, and Basic Software layers are defined sep-
rately for the various scenarios. As shown in Fig. 4, a group
f timed automata templates is constructed for each scenario
o characterize the time-related behaviours in the scenario. In
ddition, in some scenarios, particular behaviours are left un-
efined in the Autosar specification, so we address them in a
anner consistent with industrial practice, as described below.
fter the timed automata templates are instantiated, they exhibit
ynamic interactive behaviours according to the provisions in
he Autosar specification. As a conversion, all braces ({}) that
urround, e.g., instance names, are later on replaced with the con-
rete instance values. For instance, {cid} is subsequently replaced
ith a number marking the invocation of a client RunnableEntity.
8

.1.1. Underspecified behaviours
The Autosar architecture standard is silent on some imple-

entation details, thereby leaving some behaviours underspeci-
ied. In this study, we supplement the standard with interpreta-
ions in three situations:

1. an invocation from a client RunnableEntity when the re-
lated RTE queue is full

2. repeated invocations to the server RunnableEntity from
the same client RunnableEntity after a timeout occurs in
synchronous client–server communication

3. the number of times for accessing a piece of data, invoking
a server, or raising a trigger during the execution of a
RunnableEntity

ow we address each of these is described below, in turn.
In the first situation, an invocation from a client RunnableEn-

ity when the related RTE queue is full, we choose to ignore
he invocation outright. The rationale for doing so is that, if the
elated RTE queue is full, no invocation can be added to the queue,
o no further invocations will be executed. This behavioural de-
ail is modelled in timed automaton templates for the RTE in
cenario (16) and for the client RTE in Scenario (17).
In the second situation, when there are repeated invocations

o the server RunnableEntity from the same client RunnableEntity
fter a timeout occurs, we make a decision to either allow or
isallow the invocation based on whether the client and server
re in the same partition. In the Autosar architecture, partitions
re used to decompose an ECU into functional units: there is one
TE per partition controlling the RunnableEntities in the partition.
f the client and server are located in the same partition, the RTE
hall ensure that the server is not invoked again by the same
lient until the server has terminated. Otherwise, the RTE shall
nsure that the server can be invoked again by the same client
fter the timeout notification is passed. This behavioural detail
s modelled in timed automaton templates, again, for the RTE in
cenario (16) and for the client RTE in Scenario (17).
In the third situation, we specify the number of times for

ccessing a piece of data, invoking a server, or raising a trigger
uring the execution of a RunnableEntity simply to be one. This
articular number appears in the templates of Scenario (1) to
cenario (3), the templates for the client RunnableEntity in Sce-
ario (4) to Scenario (7), and the template for the trigger source
unnableEntity in Scenario (8).
If developers prefer a different interpretation or additional

ehaviours, of course, they can include them by changing the
ariables and transitions in the templates as appropriate.

.1.2. Templates for the Autosar software layer
In the software layer, as shown in Fig. 4, there are eight

roups of timed automata templates established to describe the
ehaviours of the RunnableEntities in eight scenarios covering
ender–receiver communication, client–server communication,
nd trigger event communication. For example, in sender–receiver
ommunication, there are three scenarios to transfer data, namely,
‘Sender and receiver access data implicitly’’, ‘‘Sender and receiver
ccess data explicitly’’, and ‘‘Receiver is blocked until data is
eceived’’. Each scenario needs two templates for the description.

For brevity, only the timed automata templates in Scenario (5)
f client–server communication, e.g., ‘‘Client invokes
on-concurrent server synchronously with timeout monitoring’’
rom Fig. 4, are introduced in detail. Although two timed au-
omata templates, client and server, are constructed for this
cenario, we focus on the client template here as the other is rela-
ively simple. So first, the behaviours of the client RunnableEntity
n this scenario are shown according to the provisions of the



M. Zhang, Y. Teng, H. Kong et al. The Journal of Systems & Software 201 (2023) 111675

R
e
c
t
i
A

s
m
c
b

i
c
t
a
c

Fig. 9. Behaviours of the client RunnableEntity and timed automaton template of the client RunnableEntity in Scenario (5). (a) Behaviours of the client RunnableEntity
in Scenario (5). (b) Timed automaton template of the client RunnableEntity in Scenario (5).
Autosar specification. Then the timed automaton template of the
client RunnableEntity for this scenario is introduced.

Client–server communication occurs when a client
unnableEntity invokes a server RunnableEntity. Here, consid-
ring Scenario (5), the execution method of the server is non-
oncurrent and the client initiates synchronous invocations with
he timeout monitoring mechanism. The behaviours of the client
n this scenario are shown in Fig. 9 (a) and in accordance with the
utosar specification (Anon, 2021), which states the following:

‘‘...This means that the RunnableEntity is supposed to perform a
blocking wait for a response from the server...’’
‘‘... The ServerCallPoint allows the specification of a timeout so the
client can be notified that the server is not responding and can
react accordingly. If the client invokes the server synchronously,
the RTE API call to invoke the server reports the timeout...’’
‘‘... The task that contains a runnable waiting at a wait point
changes from waiting to preempted...’’
‘‘...A task that is preempted from executing the ExecutableEntity
execution-instance changes state from preempted to running...’’

So, in this scenario, the client RunnableEntity first invokes the
erver RunnableEntity and then waits for a response. The timeout
onitoring policy is that if no response is received within the
onfigured timeout, the client RunnableEntity will be awakened
y the RTE.
The timed automaton template for the client RunnableEntity

n this case is shown in Fig. 9 (b). Because there can be multiple
lient RunnableEntities invoking the same server RunnableEn-
ity, the invocation of each client RunnableEntity is marked by
number cid. When the client RunnableEntity makes an invo-
ation, it must send the signal Invoke[{cid}] to the scheduler
and the signal InvoketoRTE[{cid}] to the RTE. It then migrates
to the waiting location and waits for the result signal Result-
Back[{cid}]. Here, the behaviour for recording time is modelled
9

in the timed automaton template of the RTE. Therefore, the client
RunnableEntity can know the occurrence of the timeout by re-
ceiving the signal Timeout[{cid}] from the RTE. In addition, a
local clock variable t is used to control this RunnableEntity and
determine whether it executes within the BCET and the WCET.

6.1.3. Templates for the RTE layer
From the ten scenarios of the RTE layer, we choose a more

complicated control scenario for the detailed description. As
shown in number (17) in Fig. 4, the RTE controls client–server
communication if a client RunnableEntity and server RunnableEn-
tity are located in different partitions.

If the client and server are located in different partitions, they
are controlled by two RTEs: a client RTE and a server RTE. The
critical behaviours of the client RTE are shown in Fig. 10 (a).
When the client RTE receives an invocation from some client
RunnableEntity, it notifies the corresponding server RTE, which
activates the server RunnableEntity to execute the invocation and
outputs the result to the client RTE. Upon receiving the result, the
client RTE passes it to the client RunnableEntity. In case a timeout
occurs, that is, the client RTE does not receive the result within
a specified deadline, it notifies the client RunnableEntity of the
timeout and does not pass the later result to the RunnableEntity,
as shown at the bottom of Fig. 10 (a). The timed automaton
template for the client RTE is shown in Fig. 10 (b). As shown in
Table 1, the behaviours in Fig. 10 (a) are separately realized in
Fig. 10 (b).

In the function of the template, the client RTE and the server
RTE maintain a first-in-first-out queue on the invoked server
side to store outstanding invocations for the invoked server
RunnableEntity, as defined in the Autosar specification (Anon,
2021):

‘‘... The RTE shall buffer a request on the server side in a first-in-
first-out queue...’’



M. Zhang, Y. Teng, H. Kong et al. The Journal of Systems & Software 201 (2023) 111675

Fig. 10. Critical behaviours of the client RTE and timed automaton template of the client RTE in Scenario (17). (a) Critical behaviours of the client RTE in Scenario (17).
(b) Timed automaton template of the client RTE in Scenario (17).

10



M. Zhang, Y. Teng, H. Kong et al. The Journal of Systems & Software 201 (2023) 111675

b

a
w

s
a

6

r
e
n
t
o
i
t

s
i
a
b
P

Table 1
Mapping from Fig. 10(a) to Fig. 10(b).
Behaviours in Fig. 10(a) Transitions in Fig. 10(b)

B1 T1, T5, T6, T7, T9
B2 T2, T11
B3 T3, T13
B4 T4, T15
B5 T12, T16

Fig. 11. Task state model in Scenario (19).

The above fragment from the Autosar specification is realized
y the transitions labelled with T2 and T11 in Fig. 10 (b).
In addition, the template models a timeout monitoring mech-

nism, conforming to the Autosar specification (Anon, 2021),
hich states the following:

‘‘...If a timeout was detected in asynchronous inter-ECU or inter-
partition client–server communication, the RTE shall ensure that
the server can be invoked again by the same client after the
timeout notification was passed to the client...’’

‘‘...A buffer overflow of the server is not reported to the client. The
client will receive a time out...’’

‘‘... When the RTE_E_TIMEOUT error occurs, the RTE shall discard
any subsequent responses to that request...’’

The above three fragments from the Autosar specification are
eparately realized by the transitions labelled with T9, T7, T12,
nd T16 in Fig. 10 (b).

.1.4. Templates for the basic software layer
Because the task and scheduler significantly impact time-

elated behaviours in the Autosar architecture, they are consid-
red here. There are four scenarios in this layer, as shown in Fig. 4,
umbered from Scenario (19) to Scenario (22), taking account of
he task types, e.g., periodic and sporadic tasks, as well as whether
r not the scheduling is preemptive. We introduce Scenario (19)
n this part, where the task is periodic, and one timed automaton
emplate is needed to express the entirety of task behaviours.

As shown in Fig. 11 , Autosar specifies the states and tran-
itions for the task (Anon, 2005), and all of them are modelled
n the proposed timed automaton template, given in Fig. 12 . The
utomaton contains all the states of the task, and the transitions
etween states are realized through the signals Activate, Start,
reempt, Wait, Release, and Terminate. Here, when the timed

automaton template receives the signal Start at the location
ready, or ready2, or ready3, or ready4, it uses the function
HeadTask() to determine whether the scheduled task is itself. In

addition, to realize the time-related behaviours of the periodic

11
task, a local clock Alarm is used to activate the task periodically
and check whether the execution time of the task meets its
deadline DeadLine[{tid}], where the variable tid is the id of
the task. The timed automaton template of the task can also
match the RunnableEntities to itself, for the sake of executing
these RunnableEntities in the order of their positions in this task.
For this reason, an incremental integer variable rid is used to
record the positions of these RunnableEntities. When it is the
time of the RunnableEntity rid to be executed, the task sends the
signal Run[{tid}][rid] to start this RunnableEntity and the signal
Stop[{tid}][rid] can be also used to stop the execution of this
RunnableEntity if the task tid is preempted.

6.2. Mapping and instantiating templates

After scenarios and parameters are extracted from the arXML
source file and templates for each scenario built, the required
templates are selected according to the extracted scenarios by the
A2A tool. A user interface is provided that allows a user to specify
the BCET and the WCET for each RunnableEntity. Then, according
to the extracted parameters values and execution times, the
selected templates are automatically instantiated as described in
Section 4, by the A2A tool.

For example, consider generating a timed automaton for the
client RunnableEntity in Listing 1. Because the scenario extracted
is number (5), the timed automaton template of Fig. 9 (b) is
selected for instantiation. The information needed to instantiate
it comes from the values of the extracted parameters and execu-
tion times of the client RunnableEntity. For the RunnableEntity,
the parameters include the task containing this particular client
RunnableEntity, and the position of the client RunnableEntity in
the corresponding task. Then the A2A tool sets the variable tid of
the corresponding task. Thus, after extraction, tid is set to two,
and its position in the task is one. Inputs of the BCET is one
second, and the WCET is two seconds. So, by using the A2A tool,
the timed automaton template is instantiated, as shown in Fig. 13.

7. Verification of timing constraints

Through the method presented, the Autosar architecture is
modelled, automatically, as a timed automata network. Timing
constraints on the software must then be verified, as dictated
by the Autosar specification. In this study, four types of timing
constraints are considered and included.

7.1. Deadlock checking

In Uppaal, a system is deadlocked if it reaches a state in which
there are no outgoing action transitions from the state itself or
its delay successors (Behrmann et al., 2004). Whether a deadlock
occurs in the model can be directly verified by the TCTL-formula:
A[] not deadlock.

7.2. Latency Timing Constraints (LTCs)

The amount of time that elapses between the occurrence of
two events can be constrained (Anon, 2021). Here, the occurrence
of the two events has a function-related causal order. Between
them, one event is responsible for stimulating and the other is
responsible for responding. Therefore, an LTC specifies the mini-
mum and/or maximum duration from the event’s occurrence that
initiates the stimulus to the occurrence of the response event.

A test automaton template called Tester is constructed to
verify an LTC, as shown in Fig. 14. To instantiate this timed
automaton template, the user needs to input the maximum value

of the latency time (MLT) in the user interface. Then the A2A tool



M. Zhang, Y. Teng, H. Kong et al. The Journal of Systems & Software 201 (2023) 111675

i
t
t
t
e
t
e
t

7

e

Fig. 12. Timed automaton template of the task in Scenario (19).
Fig. 13. Timed automaton of the client RunnableEntity in Listing 1.

nstantiates the test automaton template automatically according
o the input of the user. When the event initiating the stimulus or
he response event occurs, it is sent as a broadcast signal to the
est automaton. The test automaton waits for the signal of the
vent initiating the stimulus at the initial location, and returns
o the initial location when receiving the signal of the response
vent. A local clock t is used to record the latency time. Finally,
he user can use a TCTL-query to verify an LTC: A[] Tester.t ≤ MLT.

.3. Periodic Event Triggering Constraints (PETCs)

This type of constraint specifies the occurrence of a periodic
vent (Anon, 2021). Such an event occurs strictly according to a
12
Fig. 14. Tester template for verifying an LTC.

set period, but a jitter value may also be used to relax this strict
periodicity requirement. Normally, we hope that a periodic event
should occur within an allowable jitter range. Let tn be the nth
occurrence of the event. A periodic event triggering constraint is
satisfied if and only if for every occurrence of the event at tn, the
following holds true, where p is the period:

(n − 1) p ≤ tn ≤ (n − 1) p + jitter

However, this is not guaranteed because of the multiple tasks
and RunnableEntities, as well as different scheduling strategies
adopted in the Basic Software layer.

So checking whether the constraint holds is necessary. In the
industrial community, the method is one of using testing or simu-
lation with a bounded time interval for observation. Nevertheless,
such an approach only considers finite occurrences of the event
and cannot cover unbounded intervals. We build an auxiliary
automaton template PTester, given in Fig. 15, for this purpose.
The value of jitter for some event is input by the user interface.



M. Zhang, Y. Teng, H. Kong et al. The Journal of Systems & Software 201 (2023) 111675

T

8

Fig. 15. PTester template for verifying a PETC.

In terms of the input, PTester is instantiated automatically to
determine whether the occurrences of the event meet the peri-
odic event triggering constraint. If ‘yes’, the ‘error’ location is not
reached. Thus, the property is of the form: A[] not PTester.error.

7.4. Schedulability

If all tasks always meet their respective deadlines, then sche-
dulability is satisfied. Whether the architecture meets schedula-
bility requirements can be directly verified by using the TCTL-
query: A[] not {TaskName}.error for all tasks, where ‘error’ is the
location denoting the deadline violation of some task.

Note that using stopwatches in Uppaal creates an over-appro-
ximation of the state space, meaning that if the above query is
satisfiable, it is guaranteed that the architecture is schedulable
under all circumstances. However, if the query is not satisfi-
able, this means that a counterexample has been established
in the over-approximation. However, the architecture may still
be schedulable since the counterexample may not necessarily
correspond to a feasible run of the original architecture (David
et al., 2009).

8. Experiment

To evaluate the proposed methodology, we apply it to an
actual vehicle interior lighting control system (Anon, 2018). We
use the A2A tool to model the time-related behaviours of the
system as timed automata, and further verify timing constraints
of the model, such as deadlock, LTC, PETC, and schedulability.
The Autosar architecture of the vehicle interior lighting control
system is first described, and then the verification of the model
is presented and explained, showing the effectiveness of the
proposed methodology.

8.1. Vehicle interior lighting control system

The vehicle interior lighting control system turns lights inside
the car on or off depending on whether the doors are open or
closed. The system consists of two door sensors, an actuator, a
manager, and a service component; it works as follows:

• The sensors invoke functions in the service component to
read the digital signals from the doors and send them to the
manager.

• The manager sends the status of the lights to the actuator
according to the signals received from the doors.

• The actuator invokes the service component to set the status
of the lights, whether to be on or off.
13
Table 2
The verification results of deadlock.
BCETs (ms) WCETs (ms) Deadlock Free

1 2 Yes
2 3 Yes
3 4 Yes
4 5 Yes
5 6 Yes
6 7 Yes
7 8 Yes

Fig. 16 illustrates the Autosar architecture of the lighting
control system. Within the Autosar Software layer, in the upper
left of the figure, the software component ioHWAb provides two
services to the sensors through the RunnableEntities RDigital-
ServiceReadRight and RDigitalServiceReadLeft, respectively, in the
lower left, within the Autosar Software layer. It also includes the
RunnableEntity RDigitalServiceWrite, which sets the status of the
lights.

The software components LeftDoorSensor and RightDoorSensor,
in the centre of the figure, use the RunnableEntities RLeftDoor-
Sensor and RRightDoorSensor to invoke operations in ioHWAb
with a period of 100 ms to read the digital signals from the
doors. In addition, within the door sensor software components,
the RunnableEntities RGetResultDigitalServiceReadLeft and RGet-
ResultDigitalServiceReadRight are responsible for acquiring digi-
tal signals from the corresponding door and sending them to
LightManager, respectively.

LightManager, in the upper right of the figure, receives digital
signals from the doors and sends the status of the lights to
FrontLightActuator through the RunnableEntities RLightManager-
ReceiveLeftDoor and RLightManagerReceiveRightDoor. When the
status of the doors is sent to LightManager, above centre, the
RunnableEntity RFrontLightActuator is activated by LightManager
to read the status of lights, and then it invokes an operation to
write the status to the lights.

In the Basic Software layer, at the bottom of the figure, for each
RunnableEntity, there is one task to match it. Each task has a de-
fined priority and is preemptive. Some tasks, TaskLeftDoorSensor
and TaskRightDoorSensor, with the alarm indicators, are periodic
tasks whose period and deadline are 50 ms.

8.2. Modelling process and verification result

The vehicle interior lighting control system contains eight
sporadic tasks, two periodic tasks, and ten RunnableEntities, and
includes four sender–receiver communication protocols and three
client–server communication protocols. Using the A2A tool, the
user first inputs BCETs and WCETs for all RunnableEntities, and
the desired timing constraints, and then 34 parallel timed au-
tomata are generated from the arXML source file of the sys-
tem.2 Four kinds of timing constraints are verified based on the
automata:

8.2.1. Deadlock
Using Uppaal to check for deadlock violations, the results in

able 2 show that the model is free of deadlock.

.2.2. Checking latency timing constraints
Two LTCs are examined:

1. The amount of time from a valid invocation of RLeftDoor-
Sensor to the start of an RGetResultDigitalServiceReadLeft
execution should be less than a specific value of MLT.

2 https://github.com/Tongji-lab/Autosar/tree/main/AutosarExperiment

https://github.com/Tongji-lab/Autosar/tree/main/AutosarExperiment


M. Zhang, Y. Teng, H. Kong et al. The Journal of Systems & Software 201 (2023) 111675

i
n
L
t
c

Fig. 16. Autosar architecture of the vehicle interior lighting control system.
R

8

b
i
R
t

A

2. The amount of time from a valid invocation of RRightDoor-
Sensor to the start of an RGetResultDigitalServiceReadRight
execution should be less than a specific value of MLT.

There are four RunnableEntities considered in the two prop-
erties, namely, RLeftDoorSensor, RGetResultDigitalServiceReadLeft,
RRightDoorSensor, and RGetResultDigitalServiceReadRight. The user
adds as input MLT to verify the LTC, and the results are shown in
Table 3. For each pair of BCETs and WCETs values, we see that,
compared with LTC (a), LTC (b) requires a larger value of MLT to
satisfy the constraint. This property is due to different priorities of
the tasks that correspond to the four RunnableEntities, resulting
in the executions of more additional RunnableEntities between
the two Entities of LTC (b). In addition, for each LTC, following
the increase of the BCETs and WCETs, the value of MLT satisfying
the LTC increases accordingly because of longer executions of the
related RunnableEntities.

8.2.3. Checking periodic event triggering constraints
Two PETCs are considered:

1. The occurrence of RLeftDoorSensor triggered by a periodic
event should occur within an allowable jitter range.

2. The occurrence of RRightDoorSensor triggered by a periodic
event should occur within an allowable jitter range.

In Table 4, the user adds as input the expected jitter to ver-
fy the PETCs. To satisfy the constraints, a larger jitter value is
eeded for PETC (a) than PETC (b). This is because the task Task-
eftDoorSensor containing RLeftDoorSensor has a lower priority
han the task TaskRightDoorSensor containing RRightDoorSensor,
ausing RLeftDoorSensor to wait for more RunnableEntities to
 a

14
Table 3
The verification results of LTCs.
BCETs (ms) WCETs (ms) MLT (ms) LTC (a) LTC (b)

1 2

8 No No
11 Yes No
18 Yes No
20 Yes Yes

1 3

14 No No
17 Yes No
29 Yes No
31 Yes Yes

2 4

19 No No
20 Yes No
37 Yes No
42 Yes Yes

complete before its execution. In addition, we see that the value
of jitter satisfying each PETC grows with the increase of BCETs
and WCETs. This is also due to the fact that RLeftDoorSensor
and RRightDoorSensor should spend more time waiting for other
unnableEntities to complete.

.2.4. Schedulability
The results of the schedulability verification are shown in Ta-

le 5. We find that as BCETs and WCETs increase, the schedulabil-
ty cannot be satisfied. This is due to the fact that the
unnableEntities in each task will take longer to execute, causing
he task to fail to meet its deadline.

Through these experiments modelling and working with the
utosar architecture, we find the A2A tool to be robust in its
bility to extract configuration information from arXML source



M. Zhang, Y. Teng, H. Kong et al. The Journal of Systems & Software 201 (2023) 111675

c
s

Table 4
The verification results of PETCs.
BCETs (ms) WCETs (ms) Jitter (ms) PETC (a) PETC (b)

1 2

0 No No
2 No Yes
4 No Yes
6 Yes Yes

1 3

1 No No
4 No Yes
8 No Yes
10 Yes Yes

2 4

3 No No
6 No Yes
11 No Yes
12 Yes Yes

Table 5
The verification results of the schedulability.
BCETs (ms) WCETs (ms) Schedulability

1 2 Yes
2 3 Yes
3 4 Yes
4 5 Yes
5 6 Yes
6 7 No
7 8 No

files and to construct corresponding timed automata for both the
architecture and the auxiliary tests. For testing larger systems, as
the number of clocks in the Autosar architecture grows, we are
aware of the possibility that state explosion could lead to longer
verification times. In addition, the timing performance of systems
is sensitive to modest changes in parameter values, so exploring
the methodology in configuring and optimizing those parameters
could be a fruitful direction for further study.

9. Conclusion

In this study, we have demonstrated the viability of automat-
ically extracting time-related behaviours from Autosar architec-
ture description files, and turning them into a network of timed
automata in Uppaal that can be checked against timing prop-
erties of interest, including deadlocks, latencies, periodic event
triggering, and schedulability. Additional insight might be gained
by formulating and checking timing properties beyond those we
have considered. In addition, future advancements addressing the
state space explosion problem may enable the verification of even
larger and more complex Autosar architectures.

In terms of scope, our work is still preliminary—a proof of
concept. The Autosar specification defines an immense num-
ber of scenarios, rules, and behaviours, and we have modelled
just a subset of those that are time-related. These time-related
scenarios directly determine the verification result, and other
aspects are simplified in order to highlight the effects of sequence
and timing constraints. More specifically, it is time-related sce-
narios in the Autosar Software layer and the RTE layer that
are considered. For the Basic Software layer, scenarios with in-
terrupting processing and mixed preemptive scheduling, which
have preemptable and non-preemptable tasks mixed on the same
architecture, are unaddressed, though these will be explored in
future work. In terms of timing constraints, we have considered
four broad categories of them, but the work could be extended
to address additional ones that appear in the Autosar specifi-
ation, namely, constraints on execution time, execution order,
ynchronization timing, offset timing, and age.
15
For future work, we plan to augment our modelling and veri-
fication of Autosar architectures by extending the capabilities of
the A2A tool. In particular, new timed automata templates will be
constructed to characterize behaviours in scenarios that include
interrupting processing and a mixed preemptive scheduling, and
these will be added to the A2A library. In addition, we plan to
support new categories of timing constraints by building the nec-
essary timed automata test templates. To address the state space
explosion problem, we hope to refine our models by reducing the
number of states, variables, and clocks needed, and by making use
of assume guarantee reasoning (Clarke et al., 1989; Grumberg and
Long, 1994).

More far-reaching goals include the use of model learning
algorithms to further improve and streamline the process. In the
present work, timed automata templates must be constructed,
and scenarios and parameters extracted, in advance, from a given
arXML file. In an effort to reduce the tedium of this step, we hope
to develop algorithms that observe the external behaviours of a
given Autosar architecture, and then learn corresponding timed
automata that are able to express them.

CRediT authorship contribution statement

Miaomiao Zhang: Conceptualization, Methodology, Formal
analysis, Writing – review & editing. Yu Teng: Conceptualiza-
tion, Methodology, Validation, Formal analysis, Writing – original
draft, Writing – review & editing. Hui Kong: Conceptualization,
Methodology, Formal analysis. John Baugh: Writing – review
& editing. Yu Su: Software. Junri Mi: Methodology, Software.
Bowen Du: Conceptualization, Methodology, Formal analysis,
Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgements

This work is supported in part by the project of Huawei
Corporation, the National Natural Science Foundation of China
(61972284, 62032019).

References

Alam, M.S.U., Iqbal, S., Zulkernine, M., Liem, C., 2019. Securing vehicle ECU
communications and stored data. In: 2019 IEEE International Conference on
Communications. ICC, IEEE, pp. 1–6.

Alladi, T., Chakravarty, S., Chamola, V., Guizani, M., 2020. A lightweight authen-
tication and attestation scheme for in-transit vehicles in IOV scenario. IEEE
Trans. Veh. Technol. 69 (12), 14188–14197.

Alur, R., Dill, D.L., 1994. A theory of timed automata. Theoret. Comput. Sci. 126
(2), 183–235.

Anon, 2005. OSEK/VDK operating system. [Online]. Available: http://www.
openosek.org/tikiwiki/tiki-index.php.

Anon, 2018. Autosar application design. [Online]. Available: https://www.
cnblogs.com/snddman/p/10138552.html.

Anon, 2021. Autosar: Document search. [Online]. Available: https://www.
autosar.org/nc/document-search.

Anssi, S., Tucci-Piergiovanni, S., Kuntz, S., Gérard, S., Terrier, F., 2011. Enabling
scheduling analysis for Autosar systems. In: 2011 14th IEEE International
Symposium on Object/Component/Service-Oriented Real-Time Distributed
Computing. IEEE, pp. 152–159.

Behrmann, G., David, A., Larsen, K.G., 2004. A tutorial on Uppaal. In: Formal
Methods for the Design of Real-Time Systems. Springer, pp. 200–236.

Behrmann, G., David, A., Larsen, K.G., Håkansson, J., Pettersson, P., Yi, W.,
Hendriks, M., 2006. Uppaal 4.0. In: Quantitative Evaluation of Systems. IEEE
Computer Society, Los Alamitos, CA, pp. 125–126.

Bengtsson, J., Yi, W., 2003. Timed automata: Semantics, algorithms and tools. In:
Advanced Course on Petri Nets. Springer, pp. 87–124.

http://refhub.elsevier.com/S0164-1212(23)00070-5/sb1
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb1
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb1
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb1
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb1
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb2
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb2
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb2
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb2
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb2
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb3
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb3
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb3
http://www.openosek.org/tikiwiki/tiki-index.php
http://www.openosek.org/tikiwiki/tiki-index.php
http://www.openosek.org/tikiwiki/tiki-index.php
https://www.cnblogs.com/snddman/p/10138552.html
https://www.cnblogs.com/snddman/p/10138552.html
https://www.cnblogs.com/snddman/p/10138552.html
https://www.autosar.org/nc/document-search
https://www.autosar.org/nc/document-search
https://www.autosar.org/nc/document-search
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb7
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb7
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb7
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb7
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb7
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb7
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb7
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb8
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb8
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb8
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb9
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb9
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb9
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb9
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb9
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb10
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb10
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb10


M. Zhang, Y. Teng, H. Kong et al. The Journal of Systems & Software 201 (2023) 111675

B

C

C

C

C

C
C

D

D

F

F

F

G

G

G

J
K

K

L

L

M

N

N

P

S

S

S

T

V

Y

Y

Y

Z

Z

Z

M
U
s

Y
U
s

H
L
s

J
m
H
f

Y
U

J
C

B
U
a
e

eringer, S., Wehrheim, H., 2016. Verification of Autosar software architectures
with timed automata. In: Critical Systems: Formal Methods and Automated
Verification. Springer, pp. 189–204.

assez, F., Larsen, K., 2000. The impressive power of stopwatches. In:
International Conference on Concurrency Theory. Springer, pp. 138–152.

harette, R.N., 2021. How software is eating the car. [Online]. Available: https:
//spectrum.ieee.org/software-eating-car.

hen, J., Alalfi, M.H., Dean, T.R., Ramesh, S., 2018. Modeling Autosar implemen-
tations in simulink. In: European Conference on Modelling Foundations and
Applications. Springer, pp. 279–292.

hoi, Y., 2018. A configurable V&V framework using formal behavioral patterns
for OSEK/VDX operating systems. J. Syst. Softw. 137, 563–579.

larke, E.M., Long, D.E., McMillan, K.L., 1989. Compositional model checking.
opic, M., Leupers, R., Ascheid, G., 2020. Modelling machine learning components

for mapping and scheduling of Autosar runnables. In: 2020 IEEE 31st
International Symposium on Software Reliability Engineering. ISSRE, IEEE,
pp. 127–137.

avid, A., Illum, J., Larsen, K.G., Skou, A., 2009. Model-based framework
for schedulability analysis using Uppaal 4.1. In: Model-Based Design for
Embedded Systems. Citeseer, pp. 121–143.

enil, J., De Meulenaere, P., Demeyer, S., Vangheluwe, H., 2017. DEVS for
Autosar-based system deployment modeling and simulation. Simulation 93
(6), 489–513.

ennel, H., Bunzel, S., Heinecke, H., Bielefeld, J., Fürst, S., Schnelle, K.-P., Grote, W.,
Maldener, N., Weber, T., Wohlgemuth, F., et al., 2006. Achievements and
exploitation of the Autosar development partnership. Convergence 2006,
10.

ürst, S., Bechter, M., 2016. Autosar for connected and autonomous vehicles:
The Autosar adaptive platform. In: 2016 46th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks Workshop (DSN-W). IEEE,
pp. 215–217.

ürst, S., Mössinger, J., Bunzel, S., Weber, T., Kirschke-Biller, F., Heitkämper, P.,
Kinkelin, G., Nishikawa, K., Lange, K., 2009. Autosar–a worldwide standard
is on the road. In: 14th International VDI Congress Electronic Systems for
Vehicles, Baden-Baden. Vol. 62, p. 5.

arcia, J.L.M., Olmedo, I.S., 2020. Introducing a deferrable server into Autosar.
In: 2020 IEEE 26th International Conference on Embedded and Real-Time
Computing Systems and Applications. RTCSA, IEEE, pp. 1–6.

rumberg, O., Long, D.E., 1994. Model checking and modular verification. ACM
Trans. Progr. Lang. Syst. (TOPLAS) 16 (3), 843–871.

u, Z., Han, G., Zeng, H., Zhao, Q., 2016. Security-aware mapping and schedul-
ing with hardware co-processors for flexray-based distributed embedded
systems. IEEE Trans. Parallel Distrib. Syst. 27 (10), 3044–3057.

elecevic, E., Minh, T.N., 2019. Visualize real-time data using Autosar.
lobedanz, K., Kuznik, C., Thuy, A., Mueller, W., 2010. Timing modeling and

analysis for Autosar-based software development-a case study. In: 2010
Design, Automation & Test in Europe Conference & Exhibition. DATE, IEEE,
pp. 642–645.

otur, M., Lukić, N., Krunić, M., Velikić, G., 2020. Utilization of design patterns
in Autosar adaptive standard. In: 2020 IEEE 10th International Conference
on Consumer Electronics (ICCE-Berlin). IEEE, pp. 1–6.

arsen, K.G., Larsson, F., Pettersson, P., Yi, W., 1997. Efficient verification of
real-time systems: Compact data structure and state-space reduction. In:
Proceedings Real-Time Systems Symposium. IEEE, pp. 14–24.

uong, H.P., Panda, M., Vu, H.L., Vo, B.Q., 2017. Beacon rate optimization for
vehicular safety applications in highway scenarios. IEEE Trans. Veh. Technol.
67 (1), 524–536.

enard, C., Goens, A., Lohstroh, M., Castrillon, J., 2020. Achieving determinism in
adaptive Autosar. In: 2020 Design, Automation & Test in Europe Conference
& Exhibition. DATE, IEEE, pp. 822–827.

asser, A., Ma, D., 2019. Defending Autosar safety critical systems against
code reuse attacks. In: Proceedings of the ACM Workshop on Automotive
Cybersecurity. pp. 15–18.

eumann, S., Kluge, N., Wätzoldt, S., 2012. Automatic transformation of abstract
Autosar architectures to timed automata. In: Proceedings of the 5th Interna-
tional Workshop on Model Based Architecting and Construction of Embedded
Systems. pp. 55–60.

iper, T., Winter, S., Suri, N., Fuhrman, T.E., 2015. On the effective use of fault
injection for the assessment of Autosar safety mechanisms. In: 2015 11th
European Dependable Computing Conference. EDCC, IEEE, pp. 85–96.
16
arikhada, R.M., Shah, P.K., 2020. Speed up the validation process by formal
verification method. In: 2020 IEEE International Conference for Innovation
in Technology. INOCON, IEEE, pp. 1–4.

heng, Z., Kenarsari-Anhari, A., Taherinejad, N., Leung, V.C., 2015. A multichannel
medium access control protocol for vehicular power line communication
systems. IEEE Trans. Veh. Technol. 65 (2), 542–554.

tegmeier, A., Kehr, S., George, D., Bradatsch, C., Panic, M., Bödekker, B.,
Ungerer, T., 2017. Evaluation of fine-grained parallelism in Autosar appli-
cations. In: 2017 International Conference on Embedded Computer Systems:
Architectures, Modeling, and Simulation. SAMOS, IEEE, pp. 121–128.

ucci-Piergiovanni, S., Mraidha, C., Wozniak, E., Lanusse, A., Gerard, S., 2011.
A UML model-based approach for replication assessment of Autosar
safety-critical applications. In: 2011 IEEE 10th International Conference on
Trust, Security and Privacy in Computing and Communications. IEEE, pp.
1176–1187.

oget, S., 2010. Autosar and the automotive tool chain. In: 2010 Design,
Automation & Test in Europe Conference & Exhibition. DATE, IEEE Computer
Society, pp. 259–262.

amili, Y.C., Kathiresh, M., 2021. Autosar and MISRA coding standards. In:
Automotive Embedded Systems. Springer, pp. 37–70.

an, R., Guo, J., 2019. Timing modeling and analysis for Autosar schedule tables.
In: 2019 IEEE 19th International Symposium on High Assurance Systems
Engineering. HASE, IEEE, pp. 123–130.

an, R., Yang, J., Zhu, D., Huang, K., 2018. Design verification and validation
for reliable safety-critical autonomous control systems. In: 2018 23rd Inter-
national Conference on Engineering of Complex Computer Systems. ICECCS,
IEEE, pp. 170–179.

hang, M., Chong, P.H.J., Seet, B.-C., 2019. Performance analysis and boost for
a MAC protocol in vehicular networks. IEEE Trans. Veh. Technol. 68 (9),
8721–8728.

hao, Q., Gu, Z., Zeng, H., 2017. Design optimization for Autosar models with
preemption thresholds and mixed-criticality scheduling. J. Syst. Archit. 72,
61–68.

hu, L., Liu, P., Shi, J., Wang, Z., Zhu, H., 2013. A timing verification framework for
Autosar OS component development based on real-time maude. In: 2013
International Symposium on Theoretical Aspects of Software Engineering.
IEEE, pp. 29–36.

iaomiao Zhang is a full professor at School of Software Engineering, Tongji
niversity, Shanghai, China. Her research interests include formal methods and
oftware engineering. Contact her at miaomiao@tongji.edu.cn.

u Teng is currently a Ph.D. student at School of Software Engineering, Tongji
niversity, Shanghai, China. Her research interests include formal methods and
oftware engineering. Contact her at tengyu@tongji.edu.cn.

ui Kong is a technical expert in formal verification at Huawei Technologies Co.,
td in Shanghai, China. His research is mainly focused on software and hybrid
ystem model checking. Contact his at kongh08@gmail.com.

ohn Baugh is a professor in the Department of Civil, Construction, and Environ-
ental Engineering at North Carolina State University in Raleigh, North Carolina.
is research interests include cyber-physical systems, scientific computing, and
ormal methods. Contact him at jwb@ncsu.edu.

u Su is currently a master student at School of Software Engineering, Tongji
niversity, Shanghai, China. Contact him at lemon@tongji.edu.cn.

unri Mi is currently an engineer at Alibaba Corporation, Hangzhou, China.
ontact him at 18mjr@tongji.edu.cn.

owen Du is an assistant professor at School of Software Engineering, Tongji
niversity, Shanghai, China. His research interests include cyber-physical system,
rtificial intelligence and software engineering. Contact him at bowendu@tongji.
du.cn.

http://refhub.elsevier.com/S0164-1212(23)00070-5/sb11
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb11
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb11
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb11
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb11
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb12
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb12
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb12
https://spectrum.ieee.org/software-eating-car
https://spectrum.ieee.org/software-eating-car
https://spectrum.ieee.org/software-eating-car
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb14
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb14
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb14
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb14
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb14
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb15
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb15
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb15
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb16
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb17
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb17
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb17
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb17
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb17
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb17
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb17
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb18
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb18
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb18
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb18
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb18
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb19
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb19
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb19
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb19
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb19
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb20
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb20
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb20
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb20
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb20
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb20
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb20
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb21
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb21
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb21
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb21
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb21
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb21
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb21
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb22
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb22
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb22
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb22
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb22
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb22
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb22
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb23
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb23
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb23
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb23
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb23
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb24
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb24
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb24
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb25
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb25
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb25
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb25
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb25
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb26
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb27
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb27
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb27
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb27
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb27
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb27
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb27
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb28
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb28
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb28
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb28
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb28
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb29
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb29
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb29
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb29
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb29
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb30
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb30
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb30
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb30
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb30
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb31
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb31
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb31
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb31
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb31
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb32
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb32
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb32
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb32
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb32
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb33
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb33
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb33
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb33
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb33
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb33
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb33
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb34
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb34
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb34
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb34
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb34
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb35
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb35
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb35
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb35
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb35
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb36
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb36
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb36
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb36
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb36
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb37
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb37
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb37
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb37
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb37
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb37
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb37
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb38
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb38
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb38
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb38
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb38
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb38
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb38
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb38
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb38
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb39
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb39
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb39
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb39
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb39
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb40
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb40
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb40
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb41
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb41
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb41
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb41
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb41
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb42
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb42
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb42
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb42
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb42
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb42
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb42
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb43
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb43
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb43
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb43
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb43
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb44
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb44
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb44
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb44
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb44
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb45
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb45
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb45
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb45
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb45
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb45
http://refhub.elsevier.com/S0164-1212(23)00070-5/sb45
mailto:miaomiao@tongji.edu.cn
mailto:tengyu@tongji.edu.cn
mailto:kongh08@gmail.com
mailto:jwb@ncsu.edu
mailto:lemon@tongji.edu.cn
mailto:18mjr@tongji.edu.cn
mailto:bowendu@tongji.edu.cn
mailto:bowendu@tongji.edu.cn
mailto:bowendu@tongji.edu.cn

	Automatic modelling and verification of Autosar architectures
	Introduction
	Background
	Autosar
	Uppaal

	Related Work
	Methodology
	Time-Related Behaviours Considered
	Process of the Proposed Methodology

	Extracting Scenarios and Parameters
	Modelling the Autosar Architecture
	Timed Automata Templates
	Underspecified Behaviours
	Templates for the Autosar software layer
	Templates for the RTE layer
	Templates for the Basic Software layer

	Mapping and Instantiating Templates

	Verification of Timing Constraints
	Deadlock Checking
	Latency Timing Constraints (LTCs)
	Periodic Event Triggering Constraints (PETCs)
	Schedulability

	Experiment
	Vehicle Interior Lighting Control System
	Modelling Process and Verification Result
	Deadlock
	Checking latency timing constraints
	Checking periodic event triggering constraints
	Schedulability


	Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgements
	References


