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Abstract—We show how to model and reason about the
structure and behavior of sparse matrices, which are central
to many applications in scientific computation. Our approach is
state-based, relying on a formalism called Alloy to show that one
model is a refinement of another. We present examples of sparse
matrix-vector multiplication, transpose, and translation between
formats using ELLPACK and compressed sparse row formats
to demonstrate the approach. To model matrix computations
in a declarative language like Alloy, a new idiom is presented
for bounded iteration with incremental updates. Mechanical
verification is performed using SAT solvers built into the tool.

Index Terms—sparse matrix formats, state-based formal meth-
ods, mechanical verification.

I. INTRODUCTION

Sparse matrices are commonly used in scientific and en-
gineering domains to reduce storage requirements and min-
imize computational effort. For applications in large-scale
simulation, signal processing, and machine learning, a variety
of formats have been developed—some historical and more
widely used, and others of increasing sophistication that track
evolving computer architectures. Sparse implementations are
realized in popular packages like SuiteSparse, Sparse BLAS,
and Sparskit, and as components of larger, more general-
purpose libraries and frameworks.

To avoid storing zeros, sparse formats use array indirection
and other machinery to encode structure and provide access
to non-zero elements, while attempting to exploit hardware
characteristics and optimize performance. Memory safety and
full functional correctness are obvious concerns, not only
for developers of libraries but also for users who work di-
rectly with sparse formats, since abstraction boundaries, when
present, are often bypassed in the interest of performance.

In ocean circulation modeling—a motivating application
for us—sparse matrices figure prominently. Unstructured grid
models based on finite element methods use custom assembly
routines, impose boundary conditions for wetting and drying
to accommodate overland flooding, and perform these and
other updates in between calls to linear solvers as they step
through time. Preserving representation invariants is a basic
safety concern, and dependencies between formats and solvers
mean that substituting one solver for another can create ripple
effects in the codes that use them.

Though important and challenging, static verification of
sparse matrix software has received little attention. In a study

addressing the problem, Arnold et al. [1] describe several at-
tempts to do so, noting that they “failed to verify the functional
correctness of even simple formats using several state-of-the-
art tools,” before creating a variable-free functional language
in the style of FP to support verification with Isabelle/HOL.

In this paper, we develop and present a state-based approach
for reasoning about sparse matrix computations and show
how data abstraction and refinement principles can be used
to check invariants and perform bounded verification of safety
properties. We use Alloy [2], a lightweight formal method, to
develop models that represent the structure and behavior of
sparse matrices, and introduce a new idiom that supports the
modeling of imperative loop structure, as is commonly found
in scientific software.

To contrast our work with Arnold et al. [1], our models are
intended to be more directly relatable to code in imperative
programming languages like Fortran and C++; we rely on a
formalism and tool whose application is more readily transfer-
able to allied problems in scientific computing [3], allowing
for economies of scale in their use; and because verification
is bounded, our approach comes with push-button automation
that does not require ingenuity in proving theorems.

The paper is organized as follows. Section II introduces the
approach, the Alloy language, and notions of correctness and
refinement. Sections III and IV show how matrix structure and
behavior can be modeled and verified, with examples of ELL
and CSR formats. Section V describes an idiom for bounded
iteration and models for translation between sparse formats,
matrix transpose, and matrix-vector multiplication. Section VI
discusses scope, the ability to detect bugs, and limitations of
the approach. Section VII describes related work, and Section
VIII offers conclusions and directions for future research.

II. APPROACH

We make use of a state-based formalism called Alloy [2], a
declarative modeling language that combines first-order logic
and relational calculus, and includes associated quantifiers and
operators, along with transitive closure. It offers rich data mod-
eling features based on class-like structures and an automatic
form of analysis that is performed within a bounded scope
using a SAT solver. For simulation, the Alloy Analyzer can be
directed to look for instances satisfying a property of interest.
For checking, it looks for an instance violating an assertion:
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a counterexample. The approach is scope complete in the
sense that all cases are checked within user-specified bounds.
Alloy’s logic supports three distinct styles of expression, that
of predicate calculus, navigation expressions, and relational
calculus. The language used for modeling is also used for
specifying the properties to be checked.

Because Alloy is a structural modeling language it provides
no means of representing real numbers or floating point values,
and has only limited support for integers. In this study, we
model zero and non-zero values relying only on the property
that different numerical values are distinct, and checking for
real equivalence of symbolic expressions when and as needed.
In related work [3], our group uses predicate abstraction in
Alloy models to factor out numerical concerns, allowing us
to show that a performance enhancement made to a popular
ocean model is equivalence preserving.

Instead of automatically generating verification conditions
from code, we work with “abstract algorithms” that model the
array indexing, mutation, and stateful behavior of programs
written in imperative languages like Fortran and C++. Doing
so makes the approach language agnostic and keeps verifi-
cation tractable, since fine-grained control can be exercised
over model details and scopes. The checks are not exhaustive,
but we appeal to the small scope hypothesis [2], [4], which
suggests that most bugs have small counterexamples.

A. Structure and Behavior

In state-based formalisms like Alloy, systems are described
by defining what constitutes a state and the transitions be-
tween states. Though not an obvious choice for scientific
software, such an approach is consistent with the perspective
we advance: by separating concerns we can direct attention
to structural and behavioral complexities that exist apart from
the numerical ones [5].

With respect to structure, for instance, complex state is
defined implicitly by declarative properties, in terms of sets,
relations, and logical formulas. The Alloy Analyzer then serves
as a model finder in the mathematical sense, finding models of
logical formulas. What this means in practice is that fragments
of scientific programs, existing or planned, can be put through
their paces, with input state automatically generated to drive
the model into its corner cases, should they exist. Such state
might include, for instance, mesh topologies used in hurricane
storm surge simulations, as developed in prior work [3], or
sparse matrix formats, the subject of this paper.

In terms of behavior, operations are modeled as predicates
that define transitions between states, which are also defined
declaratively. Nondeterminism may be employed as a means
of expressing concurrency [6] in models, which may be
written in interleaving or noninterleaving styles. For “stateful”
algorithms that rely on mutation, Alloy has no fixed idioms,
but a common approach is to expand the arity of a “dynamic”
relation by introducing a time column and imposing an or-
dering on time. We later introduce a complementary approach
that works well for matrices and similar operations that rely
on bounded iteration.

A A′

C C ′

α α

OPA

OPC

Fig. 1. Refinement commuting diagram.

B. Correctness and Data Refinement

Our notion of conformance is based on substitutability. A
computer program written in terms of matrix computations,
if correct, should remain correct if sparse matrix formats are
used instead to improve performance. The historical origins
of data refinement begin with Hoare [7] and proceed in two
major veins—based on relational and predicate transformer
semantics—with numerous representative examples including
Reynolds’ stepwise refinement of programs [8], Back and
Morgan’s refinement calculus [9], and Abadi and Lamport’s
refinement mappings [10]. More recently, Bolton [11] shows
how data types in the Z notation can be translated into Alloy
using an explicit encoding that is able to find refinement
mappings automatically.

To verify sparse matrix formats and operations on them,
we adopt a perspective common to state-based formalisms,
and use data refinement to show that a more detailed concrete
system can simulate a more abstract one. The diagram in
Fig. 1 shows abstract (A) and concrete (C) domains with
unprimed and primed terms that correspond to pre- and post-
states, respectively, of abstract (OPA) and concrete (OPC)
operations.1 A functional relation from concrete to abstract
domains, the abstraction function α, describes how states
satisfying a concrete invariant I are interpreted.

We say that a sparse matrix operation OPC conforms to an
abstract one, OPA, if

I(C) ∧OPC(C,C
′) ∧ α(C,A) ∧ α(C ′, A′)

⇒ OPA(A,A
′)

(1)

a safety property stating that nothing “bad” happens, a type of
check well-suited to Alloy. To ensure that something happens
at all, a liveness property, is more difficult to formulate in
Alloy since it involves unbounded universal quantification over
states, as we discuss in Section VI.

Abstract matrix operations, then, serve as a specification and
are formulated declaratively using Alloy’s set comprehension
notation, as are abstraction functions. Sparse, concrete oper-
ations are often stateful, and for those we use a new idiom
for bounded iteration that has intuitive appeal and an obvious
relationship to code in imperative programming languages.
Concrete invariants have a direct use as heap invariants [12]
that must be satisfied by implementing programs.

1In subsequent sections, we drop subscripts A and C, in contexts where it
is obvious, for operations and abstraction functions. Alloy also supports this
type of operator overloading.
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IA

JA

A

(c)

Fig. 2. A matrix in dense (a), ELL (b), and CSR (c) formats, with rows
colored to show how elements are stored across formats.

In subsequent sections, we present portions of Alloy models
to illustrate our approach, noting that complete models can be
found online [13]. Also, although we introduce most major
features of the language as we go, it may be helpful for those
unfamiliar with it to consult the Alloy language reference,
which is available online.2

III. MATRIX STRUCTURE

Two commonly used sparse matrix formats are ELLPACK
(ELL) and compressed sparse row (CSR), which we introduce
here, looking first at their structure. Fig. 2 shows a matrix in
dense, ELL, and CSR formats.

The ELL format, named for the ELLPACK library from
which it originates, uses two two-dimensional arrays, coef
and jcoef, as seen in Fig. 2b. The coef array stores matrix
values and the jcoef array stores column indices for the
corresponding values in coef. The dimension of each array
is rows ×maxnz , where maxnz is the maximum number of
non-zero values in any single row of the matrix. Rows that
contain fewer than maxnz non-zero values are padded with
placeholder values—negative one in the jcoef array and zero
in the coef array.

The CSR format offers further compression of the ELL
format by removing the values used for padding, as shown in
Fig. 2c. To do so, the coef array is flattened into row-major
order to produce the one-dimensional array A, and the same
process is applied to the jcoef array to produce JA. To access
individual rows, an indexing array, IA, contains the starting
location of each row within the two arrays.

Turning to Alloy, matrix values and dense, ELL, and CSR
representations are defined by the signatures shown in Fig. 3.
A signature in Alloy introduces both a type and a set of
uninterpreted atoms, and may introduce fields that define
relations over them. In addition to defining a type, a signature’s

2alloytools.org/download/alloy-language-reference.pdf

sig Value {}
one sig Zero extends Value {}

sig Matrix {
rows , cols: Int ,
vals: Int→ Int→ lone Value

}

sig ELL {
rows , cols , maxnz: Int ,
coef: Int→ Int→ lone Value ,
jcoef: Int→ Int→ lone Int

}

sig CSR {
rows , cols: Int ,
IA, JA: Int→ lone Int ,
A: Int→ lone Value

}

Fig. 3. Matrix structure in Alloy: signatures for values and matrices in dense,
ELL, and CSR formats.

name can also be used within an Alloy expression to denote
the set of elements it defines. Subtype signatures using extends
introduce no new types but instead represent sets of elements
that are subsets of their parents, and the one keyword denotes
a singleton subset.

Since Alloy provides no means of representing reals or
floating point values, matrix elements are modeled as some
number of distinct non-zero values and zero, depending on
scope size. The Value and Zero signatures introduce the
following subscripted, uninterpreted atoms:

Value = {Zero0,Value0,Value1, . . . ,Valuen−2}

which are drawn from when a scope of size n is chosen
for Value (since Zero is a subtype). This simple approach
suffices for representing the structural properties of matrices,
and where more is needed, arithmetic expressions can be built
up and checked symbolically, as shown in Section V-D for
matrix-vector multiplication.

Abstract state, from a refinement perspective, is defined by
the Matrix signature, which includes fields for the number of
rows and columns and for dense storage. The vals field is
a relation that denotes a two-dimensional array, mapping row
and column indices to values; the multiplicity keyword lone
(less than or equal to one) says there can be at most one such
value for any index pair. The combination of Alloy’s dot join
and box join operators3 means that, for a matrix m, the i-j
element can be referred to as m.vals[i][j], and if its value is
v, the tuple i→j→v is a member of the m.vals relation.

For concrete state, the ELL and CSR signatures define their
respective formats. In the ELL format, coef and jcoef fields
once again denote two-dimensional arrays, as before, and in

3Alloy’s dot join operator, relational composition, generalizes the conven-
tional syntax of classes and fields in object-oriented languages. Box join
mirrors dot join but with a syntax convenient for indexed lookup.
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the CSR format, IA, JA, and A fields denote their respective
one-dimensional arrays.

At this point, the collection of signatures defined in Fig. 3
constitute a complete Alloy model. For validation, the Alloy
visualizer can be used to step through and inspect instances,
either textually or graphically, that are populated by atoms
bounded by the individual scopes of the Value, Matrix, ELL,
and CSR sets. When doing this, some of the instances produced
correspond to valid formats, like those shown in Fig. 2, and
some do not. For instance, some Matrix instances have vals
with i-j indices out of bounds, some ELL instances have
invalid column indices in jcoef, and so on.

Constraints on structure can be imposed in Alloy either
as facts, which must always hold, or as predicates, which
the Analyzer can check. A concrete invariant for ELL, for
instance, might be defined as a predicate to see if it is
maintained by an ELL operation, as we illustrate below.

IV. MATRIX BEHAVIOR

To describe dynamic behavior in Alloy, operations are
defined as predicates, or relations between states. Fig. 4 shows
examples of some basic predicates, along with assertions to
check their behavior.

The model fragment in the top half of Fig. 4 begins with a
predicate update, a basic operation of the ELL format, which
can be used to change a single value in the matrix—this
might be a step in element assembly or matrix construction
operations that are either provided by libraries or implemented
by users. Parameters include pre- and poststate ELL matrices
(e, e'), an index pair (i, j) specifying an element of the
matrices, and a new value (v) for the element in the poststate.

Within update, the first line acts as a precondition, or guard,
so that pre- and poststates are related only if indices are
valid. An implication then makes use of helper predicates,
depending on whether the new value for v is zero (shown)
or non-zero (not shown). Finally, a frame condition [14] is
defined by predicate sameDimensions: the number of rows
and columns is unchanged in the transition. In toZero, the
expression k = e.jcoef[i].j uses relational join to determine
the column of jcoef that contains index j of row i, if it
exists. The setAt predicate overrides the value of the i-k
elements in coef and jcoef. To show that update preserves the
concrete invariant for ELL matrices (not shown), an assertion
preservesInvariant is provided.

The model fragment in the bottom half of Fig. 4 defines
the abstraction function α for ELL matrices as a predicate,
showing the (functional) relationship from concrete to abstract
states. It uses a set comprehension to define m.vals: for proper
i-j pairs, the value v is in the column of jcoef—denoted by
k—that contains index j of row i, if it exists; otherwise v is
zero. For bounded sets of integer indices, an Alloy function
named range is defined.4 A refinement check can then be
performed using updateRefines to show that the concrete
update operation conforms to the abstract one.

4We subsequently overload range so that it can accept two parameters: the
first being an (inclusive) lower bound, the second an (exclusive) upper bound.

pred update [ e, e': ELL , i, j: Int , v: Value ] {
i→j in indices [ e ]
v = Zero ⇒ toZero [ e, e', i, j ]

else toNonZero [ e, e', i, j, v ]
sameDimensions [ e, e' ]

}

pred toZero [ e, e': ELL , i, j: Int ] {
let k = e.jcoef [ i ] .j {

e'.jcoef = setAt [ e.jcoef , i, k, -1 ]
e'.coef = setAt [ e.coef , i, k, Zero ]

}
}

assert preservesInvariant {
all e, e': ELL , i, j: Int , v: Value |

I [ e ] and update [ e, e', i, j, v ] ⇒ I [ e' ]
}

pred α [ e: ELL , m: Matrix ] {
m.rows = e.rows
m.cols = e.cols
m.vals =
{ i: range [ e.rows ] ,

j: range [ e.cols ] ,
v: Value |

let k = e.jcoef [ i ] .j |
some k ⇒ v = e.coef [ i ] [ k ]

else v = Zero
}

}

fun range [ n: Int ] : set Int {
{ i: Int | 0 ≤ i and i < n }

}

assert updateRefines {
all e, e': ELL , m, m': Matrix ,

i, j: Int , v: Value |
I [ e ] and α [ e, m ] and α [ e', m' ] and

update [ e, e', i, j, v ] ⇒
update [ m, m', i, j, v ]

}
Fig. 4. Matrix behavior in Alloy: the ELL update operation and invariant
check (above), and ELL abstraction function and refinement check (below).

V. MATRIX COMPUTATIONS

As outlined, the essential structure and behavior of sparse
matrix computations can be modeled, validated, and checked
for conformance. When operations are simple enough, state
transitions can be defined declaratively in a straightforward
manner using set comprehensions and other basic elements of
first-order logic and relational calculus. Operations like sparse
matrix transpose and translation between sparse formats, on
the other hand, generally involve nested loop structure and
rely more commonly on mutation, a natural consequence of
using imperative programming languages. Below we describe
a new idiom for this style of computation and present several
examples of verifying sparse matrix algorithms, including ELL
to CSR translation, CSR transpose, and CSR matrix-vector
multiplication.
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some iter: Int→ Int→Int , x, y, . . .: Int→ univ {
table [ {i: ψ, j: ω | . . . }, iter ]
all i: ψ |

all j: ω |
let t = iter [ i ] [ j ] , t' = t.add [ 1 ] {
x [ t' ] = . . . x [ t ] . . .
y [ t' ] = . . . y [ t ] . . .
. . .

}
}

Fig. 5. Tabular pattern for nested loops defining an iteration table (iter)
and time-indexed scalar variables (x, y), where ψ and ω define loop bounds.

A. An Idiom for Stateful Behavior

To accommodate stateful algorithms in declarative lan-
guages, idioms are often devised to address the so-called
incremental update problem [15], such as state transform-
ers [16] and lazy streams [17] in functional programming,
array comprehensions and accumulators in dataflow and single
assignment languages [18], [19], and a relational view taken
of sparse matrix computations as database queries [20].

Although Alloy itself has no built-in notion of mutation,
there are several techniques for modeling it [2], [21]. One
common approach—a local state idiom—adds a column to
a relation to make it “dynamic:” the addition serves as sort
of a timestamp for the other columns in the relation. Then,
using one of Alloy’s built-in modules, a total ordering can be
applied to the signature being used as a timestamp. Another
approach more common to other state-based formalisms—a
global state idiom—separates relations by placing them into
different signatures based on whether they are considered static
or dynamic, and using dynamic signatures for the pre- and
poststate parameters of transition predicates.

For matrix computations, these approaches prove to be
difficult to make work in practice because of complex inter-
actions between nested loop structure, conditionals, and the
exact scopes used by the ordering module. It is particularly
important, then, to find idioms and design patterns for formal
methods, where possible, that accommodate particular domain
needs and broaden their range of applicability [22]. Here we
describe a tabular idiom for the type of nested, bounded
iteration commonly found in matrix computations.

Fig. 5 illustrates the pattern for two nested loops, with
boilerplate that controls iteration over an innermost loop body.
The existentially quantified expression binds an iteration table
iter and some number of dynamic variables, such as x and y
(of univ type, the universal set), which are indexed by an Int

timestamp. The table predicate establishes the form and order
of the table using an argument that defines loop bounds as a
binary relation, and to which a time column is added. Time
variables t and t' are used within the loop body to work with
current and next values of the dynamic variables.

While the illustration above makes use of scalar dynamic
variables, more complex types with array-like indexing, for
instance, can be represented by increasing the arity of the
relation used to represent the variable, as we later show.

kpos ← 0
for i in range(rows) do

for k in range(maxnz ) do
if jcoef [i, k] 6= −1 then

A [kpos] ← coef [i, k]
JA [kpos] ← jcoef [i, k]
kpos ← kpos + 1

IA [i+ 1] ← kpos

(a)

kpos [ 0 ] = 0
all i: range [ e.rows ] | {

all k: range [ e.maxnz ] |
let t = iter [ i ] [ k ] , t' = t.add [ 1 ] |

e.coef [ i ] [ k ] != Zero ⇒ {
c.A [ kpos [ t ] ] = e.coef [ i ] [ k ]
c.JA [ kpos [ t ] ] = e.jcoef [ i ] [ k ]
kpos [ t' ] = kpos [ t ] .add [ 1 ]

} else
kpos [ t' ] = kpos [ t ]

c.IA [ i.add [ 1 ] ] = kpos [ end [ iter , i ] .add [ 1 ] ]
}

(b)

m

e c

α

ellcsr

α

(c)

Fig. 6. ELL to CSR translation: (a) pseudo-code, (b) fragment of Alloy model,
and (c) commuting diagram.

B. ELL to CSR Translation

The need to translate between one sparse format and another
may arise for a number of reasons, including dependencies
between formats and solvers, the relative differences in per-
formance between construction and other operations to be
performed, and so on.

To translate between ELL and CSR formats, as an example,
recall from earlier descriptions that the CSR representation
removes padding from rows that contain fewer than maxnz
values in the ELL format, as shown in Fig. 2. To allow for
this, a third array containing the start location for each row, IA,
is defined. The translation algorithm, shown in Fig. 6a, loops
through the coef and jcoef arrays used in the ELL format,
adding any non-zero values to the A and JA arrays used in the
CSR format. A variable kpos keeps track of the next available
position in the CSR arrays. Once an inner loop completes, the
value of kpos is the starting location of the next row to be
recorded in IA.

Like other operations in Alloy, the translation from ELL to
CSR formats is defined as a predicate:

pred ellcsr [ e: ELL , c: CSR ] { ... }

Using the tabular idiom, we distinguish between static and
dynamic variables. The A, JA, and IA arrays are static since
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their elements are set just once. The variable kpos, however,
is dynamic, so the following boilerplate is used ahead of the
Alloy fragment shown in Fig. 6b:

some iter: Int→ Int→Int , kpos: Int→ Int {
table [ range [ e.rows ]→ range [ e.maxnz ] , iter ]

which defines iter from the loop bounds and gives a binding
for kpos, the only dynamic variable. Because it is dynamic,
kpos is indexed by time, and its current and next values
are given by kpos[t] and kpos[t'], respectively. When the
conditional test e.coef[i][k] != Zero is false, the expression
kpos[t'] = kpos[t] serves as a frame condition for kpos. The
function end in the last line of the Alloy fragment obtains kpos

at the end of an inner loop.
As shown in Fig. 6c, the abstraction functions α for both

the ELL and CSR formats are used to determine correctness,
which we check as follows:

I(e) ∧ ellcsr(e, c)⇒ (α(e,m)⇔ α(c,m)) (2)

where the expression is universally quantified over matrices in
dense (m), ELL (e), and CSR (c) formats.

C. CSR Transpose

Matrix transpose swaps the row and column indices of a
matrix, so its definition is straightforward for a dense matrix
representation. Using a set comprehension for the vals field
of poststate m', the transpose of m is:

{ j, i: Int , v: Value | i→j→v in m.vals }

which swaps i and j indices.
The CSR transpose algorithm is more involved. It consists

of four phases: (1) compute row lengths of the transpose, (2)
set the starting location of each row in the IA array, (3) copy
values and indices into the A and JA arrays, using the content
of IA as iteration variables (so IA is destructively modified),
and (4) right shift the content of IA one place, returning it to
its state at the end of phase 2.

The algorithm uses two sets of arrays: A, JA, and IA arrays
as input, and AO, JAO, and IAO arrays as output. Focusing
on just the third phase, shown in Fig. 7a, the algorithm
steps through rows of the input matrix, determines the current
column j, finds the starting position nxt of that column in the
output matrix using the IAO array, and updates those elements
of the A and JA arrays. The starting location of that column
is then incremented in the IAO array for the next iteration.

For the Alloy model, a fragment corresponding to phase 3
is shown in Fig. 7b, where we once again distinguish between
static and dynamic variables. The j and nxt variables are
temporary local variables, and the A and JA arrays are static
since their elements are set just once. The iao array, however,
is dynamic, since the j element is accessed and modified in
each step of the inner loop. The following boilerplate is used:

some iter: Int→ Int→Int , iao: Int→ Int→ Int {
table [ {i: range [ c.rows ] ,

k: range [ c.IA [ i ] , c.IA [ i.add [ 1 ] ] ] },
iter ]

for i in range(rows) do
for k in range(IA [i], IA [i+ 1]) do

j ← JA [k]
nxt ← IAO [j]
AO [nxt] ← A [k]
JAO [nxt] ← i
IAO [j] ← nxt + 1

(a)

all i: range [ c.rows ] |
all k: range [ c.IA [ i ] , c.IA [ i.add [ 1 ] ] ] |

let t = iter [ i ] [ k ] , t' = t.add [ 1 ] ,
j = c.JA [ k ] ,
nxt = iao [ t ] [ j ] {

c'.A [ nxt ] = c.A [ k ]
c'.JA [ nxt ] = i
iao [ t' ] = iao [ t ] ++ j→ nxt.add [ 1 ]

}
(b)

m m′

c c′

α α

trans

trans

(c)

Fig. 7. CSR transpose, phase 3: (a) pseudo-code, (b) fragment of Alloy model,
and (c) commuting diagram.

which defines iter from the loop bounds and gives a binding
for an (intermediate) iao array, the only dynamic variable, as
a ternary relation, since it is indexed by time. In this case, the
inner loop variable k depends on the outer loop variable i, as
shown in the set comprehension that builds the iteration table.
To update array iao in the inner loop body, Alloy’s relational
override operator (++) is used.

As illustrated in Fig. 7c, the concrete CSR transpose oper-
ation can be shown to conform to the abstract one, which we
check as follows:

I(c) ∧ trans(c, c′) ∧ α(c,m) ∧ α(c′,m′)
⇒ trans(m,m′)

(3)

where the expression is universally quantified over matrices in
dense (m, m′) and CSR (c, c′) formats.

D. CSR Matrix-Vector Multiplication

Sparse matrix-vector multiplication is a basic step in linear
and eigenvalue solvers, and is therefore central to many
scientific and engineering applications.

With respect to loop structure, the computation Ax is an
independent series of dot products, one for each element of b,
the result vector. Because incremental updates are not required
in the computation, both dense and sparse algorithms can be
expressed as set comprehensions, and there is little need for
the tabular idiom we define.
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j p q

0 Ai,0 x0

1 Ai,1 x1

2 Ai,2 x2
...

...
...

(a)

Dot product b[i] for dense storage, matrix m, sequence x:
{ j: Int , p, q: Value -Zero |

j in range [ m.cols ] and p = m.vals [ i ] [ j ]
and q = x [ j ] }

(b)

Dot product b[i] for CSR storage, matrix c, sequence x:
{ j: Int , p, q: Value -Zero |

some k: range [ c.IA [ i ] , c.IA [ i.add [ 1 ] ] ] |
j = c.JA [ k ] and p = c.A [ k ]

and q = x [ c.JA [ k ] ] }
(c)

m

c b

α mvmx

mvmx

(d)

Fig. 8. Matrix-vector multiplication: (a) sum of products for row i of matrix A
and vector x, (b) dense dot product in Alloy, (c) CSR dot product in Alloy,
and (d) commuting diagram.

To check conformance, however, elements of the resulting
vectors must be shown to be equivalent, which effectively
calls for a comparison of symbolic expressions. Instead of
building general machinery for doing so,5 however, we take a
lightweight approach and model an ordered sum of products
as a relation.

The SumProd signature defines this particular kind of sym-
bolic expression as a ternary relation of integers and value
pairs, as shown below and illustrated in Fig. 8a.

sig SumProd { vals: Int→ lone Value→ Value }

In the vals relation, each pair of values represents a product
of scalar values, and the entire relation defines the sum of the
products. An index associated with each pair corresponds to
its position in the associated input vectors.

To model matrix-vector multiplication, then, the result vec-
tor b is represented as a sequence of SumProds. A basic step
in the algorithm that computes dot products is shown Figs. 8b
and 8c for matrices in dense and CSR formats, respectively.
In both cases, each product pair p-q is comprised of non-zero
values (Value-Zero) to facilitate a comparison of expressions.

5See, for instance, the work of Siegel et al. [23], who build symbolic
expression tables for checking real, IEEE, and Herbrand equivalence of
general symbolic expressions using the Spin model checker.

As illustrated in Fig. 8d, the concrete CSR matrix-vector
multiplication operation can be shown to conform to the
abstract one, which we check as follows:

I(c) ∧mvm(c, x, b) ∧ α(c,m)⇒ mvm(m,x, b) (4)

where the expression is universally quantified over matrices in
dense (m) and CSR (c) formats, and input (x) and result (b)
vectors.

VI. DISCUSSION

To perform the analyses, Alloy provides a number of SAT
solvers. For simulation, we use MiniSat [24], an incremental
SAT solver from Chalmers University of Technology, Swe-
den, and for checking, Lingeling [25] from Johannes Kepler
University, Austria. All experiments are performed on a 3.5-
GHz-Intel-Core-i7 desktop computer.

By default, Alloy uses a scope of size 3 for signatures and
a bitwidth of 4 for integers (i.e., from −8 to 7, inclusive). For
values, that means two distinct non-zero values and zero. For
matrices, which have integer indices, that means a size of 7×7
for dense storage, for instance.

When using default scopes, simulations in Alloy are pro-
duced instantaneously, as are counterexamples when checking
assertions, indicating, for instance, array referencing and indi-
rection problems; matrices as small as 2 × 2 and smaller are
typically sufficient. For successful checks, most are completed
in a matter of seconds or under a minute, with the longest
being the refinement check for CSR transpose, which takes a
couple of hours. In practice, we often use smaller matrix sizes
and larger numbers of distinct values.

In terms of limitations of the approach, because only safety
is being checked, operations can “do nothing” and still be con-
sidered correct, e.g., as a result of inadvertent overconstraint.
Ensuring liveness with Alloy is more difficult because the form
of the check requires an unbounded universal quantification
over states, as in the following:

I(c)⇒ ∃ c′ | trans(c, c′) (5)

which asserts that every CSR matrix c satisfying its invariant
has a transpose. In practice, the applicability of operations
can be spot-checked using Alloy’s simulator and, for small
scopes, generator axioms [2] can be used to populate terms in
the poststate.

Because correctness is based on conformance with abstract
operations, which serve as a specification, validation is par-
ticularly important. Beyond just simulation, we find it helpful
to check properties of those operations that should hold. For
example, the abstract transpose operation is functional and
deterministic, eliciting the following check:

I(m) ∧ trans(m,m′) ∧ trans(m,m′′)⇒ eqv(m′,m′′) (6)

When first defining the operation, we inadvertently swapped
row and column sizes in the poststate, resulting in nondeter-
minism that was detected in this manner.
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VII. RELATED WORK

Earlier we cite the studies of Arnold et al. [1] and Kotlyar
et al. [20], both of which have compilation of sparse matrix
codes as their primary objective. Beyond program synthesis,
Arnold et al. also take up verification because of its potential
role in discovering new formats via inductive synthesis. They
write: “We are not aware of previous work on verifying full
functional correctness of sparse matrix codes. We are not
even aware of work that verified their memory safety without
explicitly provided loop invariants.”

To verify sparse matrix codes, Arnold et al. design a “little
language" (LL) that can be used to specify programs as
sequences of high-level transformations on lists. The models
are then translated automatically into Isabelle/HOL for verifi-
cation. The authors verify sparse matrix-vector multiplication
operations on jagged diagonals (JAD), coordinate (COO), and
sparse CSR (SCSR) formats.

In quantifying proof rule reuse, they find that “on average,
fewer than 19% of rules used by a particular format are specific
to this format, while over 66% of these rules are used by at
least three additional formats, . . . .” They note, however, that
format-specific rules are harder to prove, and believe they can
be refactored to increase reuse and improve automation.

VIII. CONCLUSIONS

We describe a state-based approach for reasoning about the
structure and behavior of sparse matrices. Though declara-
tive, the models resemble imperative programs, sharing basic
elements like array indirection and loop structure, with the
latter made possible by a new idiom for stateful algorithms.
Concrete invariants developed and checked are also directly
usable for implementations in conventional languages. The
study can be viewed, in a way, as an evaluation of state-based
formal methods in the context of scientific computing.

The experience has been positive for our group—to the
extent that we now use Alloy to spot check the kinds of nu-
merical codes we work with and develop, both in Fortran and
C++. It is straightforward to extract program fragments, model
them in Alloy, and check a property of interest. Although we
have yet to find bugs in existing code, we have found errors
in documentation: misstated or at best ambiguous properties
that do not hold in software.

Work with Alloy is proceeding in two major directions:
applications and tool support. On the latter, we are develop-
ing a framework for sharing and visualizing Alloy instances
that includes support for domain-specific customization, with
spatial layouts that can accommodate planar embeddings of
finite element meshes and matrices of various dimensions. We
also imagine but have not implemented a layer of syntactic
sugar that could reduce some of the boilerplate needed to
express bounded iteration. With respect to applications, we
are looking at more complex sparse matrix formats and paral-
lelization, adding meshing and assembly concerns for hybrid
and element-by-element solvers, and incorporating moving
patches [26] and other types of adaptivity in finite element
meshes.
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