
Advances in Engineering Software 92 (2016) 27–39

Contents lists available at ScienceDirect

Advances in Engineering Software

journal homepage: www.elsevier.com/locate/advengsoft

SMT: An interface for localized storm surge modeling

Tristan Dyer, John Baugh∗

Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, NC 27695, United States

a r t i c l e i n f o

Article history:

Received 20 April 2015

Revised 24 September 2015

Accepted 12 October 2015

Keywords:

Hurricane storm surge

Subdomain modeling

Finite element analysis

ADCIRC

Range search

Visualization

a b s t r a c t

The devastation wrought by Hurricanes Katrina (2005), Ike (2008), and Sandy (2012) in recent years con-

tinues to underscore the need for better prediction and preparation in the face of storm surge and rising sea

levels. Simulations of coastal flooding using physically based hydrodynamic codes like ADCIRC, while very ac-

curate, are also computationally expensive, making them impractical for iterative design scenarios that seek

to evaluate a range of countermeasures and possible failure points. We present a graphical user interface that

supports local analysis of engineering design alternatives based on an exact reanalysis technique called sub-

domain modeling, an approach that substantially reduces the computational effort required. This interface,

called the Subdomain Modeling Tool (SMT), streamlines the pre- and post-processing requirements of sub-

domain modeling by allowing modelers to extract regions of interest interactively and by organizing project

data on the file system. Software design and implementation issues that make the approach practical, such as

a novel range search algorithm, are presented. Descriptions of the overall methodology, software architecture,

and performance results are given, along with a case study demonstrating its use.

© 2015 Elsevier Ltd. All rights reserved.

1

w

t

o

t

a

t

e

n

p

o

a

i

t

i

l

a

e

a

t

t

h

o

t

t

m

i

W

a

e

1

u

p

(

(

o

t

i

s

e

h

0

. Introduction

Hurricane storm surge poses a threat to coastal communities,

hich risk destruction to life and property. The succession of events

hat begins with wind and pressure fields and results in catastrophic,

verland flooding is mathematically complex and operates over mul-

iple scales of time and space. While the aftereffects of coastal storms

re readily apparent, predicting them remains a challenge because of

he computational effort demanded by large-scale storm surge mod-

ls. Multiplying the challenge, from an engineering perspective, is the

eed to consider – and simulate surge events over – alternative to-

ographies that represent hypothetical design and failure scenarios

f levees and other critical infrastructure.

To make storm surge simulations more practical for engineering

nalysis, we have developed an approach, called subdomain model-

ng [1], that substantially reduces the computational effort required

o evaluate multiple topographic changes in a geographic region of

nterest. Using this approach, a storm event is first simulated on a

arge-scale domain, such as the western North Atlantic Ocean, that is

ble to capture the evolution of processes that originate far from the

ngineer’s region of interest [2]. Then, design and failure scenarios

re introduced on a local domain that makes use of boundary condi-

ions obtained from the full domain, thereby avoiding computations

hat would fall outside the sphere of influence of any changes that
∗ Corresponding author. Tel.: +1 919 515 7697.

E-mail address: jwb@ncsu.edu (J. Baugh).

a

w

r

t

ttp://dx.doi.org/10.1016/j.advengsoft.2015.10.003

965-9978/© 2015 Elsevier Ltd. All rights reserved.
ave been introduced. The intuition is that the local failure of a levee

r rebuilding of a stretch of dunes, say, remains local, and is unlikely

o create hydrodynamic effects tens of miles up the coastline.

Because subdomain modeling suggests new steps in the simula-

ion workflow, we introduce a graphical user interface that allows

odelers to work directly with large-scale grids, extract regions of

nterest, and manage projects and files for simulation and analysis.

e begin with background on ADCIRC and subdomain modeling,

nd continue with motivation, design, and implementation consid-

rations.

.1. ADCIRC and subdomain modeling

The Advanced Circulation model (ADCIRC) is a parallel,

nstructured-grid finite element hydrodynamic code that sup-

orts three dimensional (3D) and two dimensional depth integrated

2DDI) analyses [3]. It is used by the U.S. Army Corps of Engineers

USACE), the Federal Emergency Management Agency (FEMA), and

thers to simulate storm surge and tides along the East coast of

he United States and elsewhere [4,5]. The 2DDI formulation used

n subdomain modeling is derived from the vertically integrated

hallow water equations using the generalized wave continuity

quation (GWCE) formulation [3].

Three primary routines drive the physics of the ADCIRC model and

re executed in succession at each timestep: the GWCE routine, the

et/dry routine, and the momentum equation routine [4]. The GWCE

outine, which determines the free surface elevation at each node in

he domain for the current timestep, can use either a spatially implicit

http://dx.doi.org/10.1016/j.advengsoft.2015.10.003
http://www.ScienceDirect.com
http://www.elsevier.com/locate/advengsoft
http://crossmark.crossref.org/dialog/?doi=10.1016/j.advengsoft.2015.10.003&domain=pdf
mailto:jwb@ncsu.edu
http://dx.doi.org/10.1016/j.advengsoft.2015.10.003

28 T. Dyer, J. Baugh / Advances in Engineering Software 92 (2016) 27–39

c

t

fi

v

t

b

t

c

[

r

w

t

m

C

t

c

s

p

t

T

e

m

t

l

o

d

a

c

c

a

v

O

a

S

b

e

n

t

2

o

m

or explicit method, employing an iterative Jacobi Conjugate Gradi-

ent method or a lumped mass matrix method, respectively. Subdo-

main modeling uses the implicit method. The wet/dry routine deter-

mines the wet or dry status of each node based on elevation, velocity,

wet/dry status in the previous timestep, and wet/dry status of neigh-

boring nodes [6]. The momentum routine determines the x and y ve-

locity at each node for the current timestep by explicitly solving the

shallow water equations using a lumped mass matrix.

The necessity and effectiveness of large-scale approaches for tide

and storm surge modeling are addressed by Blain et al. [2], who

examine combinations of domain size and boundary conditions for

their effects on computed storm surge characteristics. The authors

conclude that small domains, whose boundaries are in the same re-

gions where surge effects appear, are inadequate because the surge

effects on those boundaries cannot be known, and hence enforced,

a priori. The open ocean boundaries of very large domains, however,

are far enough removed from these regions that the influence of the

boundary condition specification is minimal, and such domains are

found to be the most practical and effective.

In order to retain the accuracy and effectiveness of large-scale

simulations in ADCIRC while providing the speed and portability of

small-scale simulations, we have developed the subdomain model-

ing approach. Subdomain modeling allows one to perform a series of

hurricane simulations on multiple, alternative topographies in a ge-

ographic region of interest. This capability is achieved by recording

data at the boundaries of the region of interest during the simula-

tion of a storm event over the entire geographic region (called a full

domain). The recorded data are then used to enforce the boundary

values during a subdomain run using a new type of boundary condi-

tion. Like the domain decomposition solver used in Parallel ADCIRC

[4], the new boundary condition makes use of water surface eleva-

tion, wet/dry status, and depth averaged water velocity by:

• working with the existing non-periodic elevation boundary con-

dition formulation in ADCIRC, which specifies nodal elevations in

the implicit GWCE formulation,
• incorporating the ability to force wet/dry status on boundary

nodes while the wetting and drying routine executes, and
• taking advantage of the explicit nature of the momentum equa-

tion solver to assign boundary velocities outright.

By employing this new boundary condition, a subdomain can pro-

duce a solution that matches a full domain run in a small fraction

of the time. Modifications to ADCIRC enable this basic functionality

and are now part of the official distribution [7]; those implementa-

tion details are provided in a companion paper [1]. The focus here

is on a graphical user interface, the Subdomain Modeling Tool (SMT),

that improves upon the command-line interface by providing an intu-

itive and interactive workflow for subdomain modeling, while offer-

ing compatibility with existing mesh development tools in an exten-

sible architecture designed for cross-platform expansion and future

growth.

2. Background, functionality, and design goals

Before laying out design goals for a more sophisticated user in-

terface, we begin with the underlying building blocks on which such

an interface could be built. These low-level steps are largely driven

by the mathematical formulation of coastal hydrodynamic codes like

ADCIRC, and by the computational aspects of subdomain modeling.

The construction of a subdomain model consists of four main

steps, as outlined in Fig. 1. Initially, a region of interest is identified,

and subdomain input and control files are generated. Then, a full do-

main ADCIRC run is performed, after which a subdomain boundary

conditions file is extracted from the full domain output files. Finally,

a subdomain ADCIRC run is performed, generating results that can be

used to verify the subdomain model against the full domain.
Following the construction of the subdomain model, subsequent

ase studies can be carried out by iteratively making local changes

o the subdomain mesh and performing an ADCIRC run on the modi-

ed subdomain. After each iteration, the modified subdomain can be

erified to ensure that the effects of the changes do not propagate to

he subdomain boundaries, or that the extent of the variations at the

oundaries are within an acceptable tolerance, at the discretion of

he modeler. Additional details and case studies describing the verifi-

ation of subdomain boundaries and results are presented elsewhere

1,8].

Considering a couple of these steps in more detail, in the first, a

egion of interest can be identified using simple geometric shapes

ith numerical parameters given textually. Absent visual interaction,

he modeler confirms by some other means that the extracted area

atches her region of interest. This step produces the required AD-

IRC input files, along with additional ones for subdomain modeling,

hough manual intervention is needed for adjusting some of ADCIRC’s

ontrol parameters. In the third step, the modeler can generate the

ubdomain boundary conditions files using the basic building blocks

rovided. The generated files must then be placed in expected loca-

ions before moving on to step four and performing a subdomain run.

he verification of the subdomain model can be performed by gen-

rating images and hydrographs at specific nodal locations, and by

anually comparing their values.

In practice, studies employing subdomain modeling lead to mul-

iple, alternative subdomain meshes. For example, the design of a

evee system could use a single region of interest to test a variety

f levee configurations and failure scenarios. Upon creating a sub-

omain model, each levee configuration would be incorporated into

unique copy of the subdomain mesh, and each of these unique

onfigurations would be generated by the modeler performing the

ase study. Getting new topographic features into a mesh might be

chieved either with SMT, or by using other software packages de-

eloped specifically for the purpose of re-meshing and mesh editing.

ne of the more popular tools used within the ADCIRC community

nd by other surface-water modelers is SMS (Surface-water Modeling

ystem), a proprietary software product developed and maintained

y Aquaveo [9]. SMS provides interactive tools for generating and

diting ADCIRC meshes, although they do not include the features

ecessary to create subdomains or manage the file formats specific

o subdomain modeling.

.1. Desired functionality

Building on these basic capabilities, we outline the design goals

f a more interactive and visually oriented interface for subdomain

odeling that also includes project management features.

• Targeting regions of interest - A visual representation of AD-

CIRC meshes, capable of displaying topographies and nodal at-

tributes with customizable color gradients, allows modelers to

identify features and regions of interest interactively by panning

and zooming. Selection tools would then allow the modeler both

to select and deselect elements to be included in the subdomain.

Ideally, interaction with a mesh would be rapid and direct. Based

on empirical studies, operations that are able to complete within

about 100 ms appear as though immediate [10,11].
• Managing subdomains - An ability to create, manage, and view

the location of files is needed for a streamlined workflow. Files

specific to subdomain modeling, such as those enforcing bound-

ary conditions, would be created automatically at the appropriate

stage within the workflow.
• Subdomain verification - Following the construction of a sub-

domain model, the subdomain grid should be verified to ensure

that results of the subdomain and full domain runs match. Sup-

port for this verification step would include visual and numerical

T. Dyer, J. Baugh / Advances in Engineering Software 92 (2016) 27–39 29

Fig. 1. Workflow for subdomain modeling [1].

2

e

o

w

f

i

a

S

i

i

p

e

i

c

i

d

n

t

f

m

d

i

m

3

e

u

i

inspection tools that could also be used after subdomains are

modified to show that they are large enough to fully contain the

altered hydrodynamics.

.2. Design goals

Our design approach is intended to address several major goals,

ach aimed at improving the basic workflow and promoting the use

f subdomain modeling:

1. Leverage the power of subdomain modeling with a visual inter-

face that maintains compatibility with ADCIRC and other comple-

mentary tools that users already employ.

2. Let users work within their problem domain using direct manipu-

lation [12], a term suggesting that interactions are more effective

if the interface provides a continuous representation of the prob-

lem, the modeler manipulates this representation through phys-

ical actions (as opposed to syntax), and the interactions are both

rapid and visually reversible.

3. Realize these goals through an extensible, open-source architec-

ture designed for cross-platform expansion and future growth.

ADCIRC already has a well established community-driven soft-

are development approach, with many extensions being success-

ully added to the code-base, including the subdomain approach

tself. However, less attention has been paid to mesh editing and visu-

lization tools for the ADCIRC community, with a proprietary tool like
MS serving routine needs. New capabilities sometimes warrant new

nterface features to hook into them, so we hope to provide a base

mplementation for visualization and user interaction that can sup-

ort the broader research and development communities and also

ncourage experimentation.

Our approach to extensibility is of the glass-box variety, mean-

ng that developers who wish to extend the software can view the

ode, but should separate their additions from the original software

n a way that does not affect the original code [13]. Such architecture

riven frameworks typically rely on features like inheritance and dy-

amic binding in order to achieve extensibility, and are often easier

o work with than those employing black-box extensibility.

Library dependencies and overall architecture are chosen to allow

or cross-language, multi-platform growth. Not only does this pro-

ote code reuse within the ADCIRC community as researchers and

evelopers create their own tools, it simplifies the translation of ex-

sting code onto new delivery platforms, such as web browsers and

obile devices, as the demand for tools on these platforms increases.

. GUI design

Good interfaces allow a user to accomplish tasks as simply and

fficiently as possible. In seeking to design one, we begin by observing

sers and their customary workflow, and look for opportunities to

mprove upon it.

30 T. Dyer, J. Baugh / Advances in Engineering Software 92 (2016) 27–39

Fig. 2. An ADCIRC subdomain project in SMT.

3

s

m

i

d

r

n

(

S

s

3

n

t

m

S

m

f

3

o

a

d

a

v

s

o

r

b

p

i

f

a

s

d

d

o

m

c

s

3

s

m

r

w

d

m

a

u

f

t

o

s

p

u

A typical SMT user will be familiar with finite element meshes,

and will often have experience using SMS as a mesh editing tool. Cur-

rent users of subdomain modeling, however, are required to perform

their tasks from the command line. SMT aims to improve upon the

existing subdomain modeling workflow by providing a complemen-

tary interface on top of the existing subdomain modeling functional-

ity. In order to provide a simple and intuitive interface, the layout and

design of SMT draws from vector graphics editors and mesh visual-

ization tools by grouping similar features into distinct modules.

The SMT interface is divided into two main sections, as seen in

Fig. 2. On the right side of the SMT window, and occupying the ma-

jority of the available space, is the visualization pane, where a mesh

is displayed and all panning, zooming, and selections are performed.

On the left is a module stack containing five modules, each providing

tools specific to a distinct step in the subdomain modeling process.

3.1. Visualization

The spatial refinement in ADCIRC models tends to vary, so display-

ing an entire mesh in a single window means that features in regions

with tight nodal spacing may not be seen clearly. For example, Fig. 2

shows an SMT window with a mesh of the western North Atlantic

Ocean that contains a high level of refinement along the North Car-

olina coast. Elements in the deep ocean, which are on the order of

hundreds of kilometers in size, can be seen clearly. Coastlines, on the

other hand, are much more highly refined and cannot be easily dis-

tinguished. SMT provides visual access to all parts of a large ADCIRC

mesh by zooming and panning.

Subdomain modeling places no restrictions on the shape of a sub-

domain other than that it be a contiguous region, and SMT provides

tools that allow users to design the shapes of their subdomains in-

teractively. The following selection tools, available in the ‘Create New

Subdomain’ module and listed by their icons in the SMT interface,

give users several ways of selecting elements to be included in their

subdomains:

• - Select or deselect individual elements

• - Select or deselect elements by drawing a circle

• - Select or deselect elements by drawing a square

• - Select or deselect elements by drawing a polygon.

Note that each of these tools includes the ability both to select and

deselect elements in the full domain, allowing users to produce very

complex shapes. Additionally, SMT provides undo and redo capabili-

ties, allowing users to quickly correct inadvertent selections.
.2. Data management

To support data management, SMT introduces the concept of a

ubdomain project for organizing the files associated with a full do-

ain and any of its associated subdomains. First in the module stack

s the ‘Project Explorer’, which shows the structure of the current sub-

omain project in a collapsible file tree viewer. This structure is mir-

ored in the underlying file system, and all files maintain their origi-

al names and formats if they have come from another tool or system

e.g., ADCIRC files). Subdomain project information is maintained by

MT in an XML file with the .spf (subdomain project file) file exten-

ion, which is used to maintain project state between SMT sessions.

.3. Subdomain modification

The ‘Edit Subdomain’ module provides basic tools for editing

odal properties such as location, elevation, and Manning’s n. While

here is no pressing need to duplicate the more sophisticated re-

eshing and editing features of more commonly available tools like

MS, the SMT implementation provides robust selection tools and

odular data structures that would make such extensions straight-

orward.

.4. Running ADCIRC

Both full domain and subdomain ADCIRC can be run either within

r outside the SMT interface. As outlined in Section 2, the second

nd fourth steps of constructing a subdomain model involve a full

omain ADCIRC run that records values at the subdomain bound-

ry nodes, and a subdomain run that uses the recorded data to force

alues along the boundaries of the subdomain, respectively. SMT en-

ures that steps such as these are performed in the correct order by

nly giving users the option to run a subdomain once the full domain

un has completed and the appropriate boundary condition files have

een generated by SMT.

Fig. 4 shows the options available in the ‘ADCIRC’ module of a

roject in which the full domain run has completed. The full domain

s run by pressing the ‘Run Full Domain’ button. SMT detects when a

ull domain run is complete and automatically generates the bound-

ry condition files needed to run the subdomain in a project. Any

ubset of the subdomains in the project can be run by selecting the

esired subdomains from the list and pressing the ‘Run Selected Sub-

omains’ button. Subdomains can be edited and rerun at any time

nce the full domain run has completed, and duplicates of subdo-

ains can be created and modified, allowing users to make localized

hanges and perform any number of individual simulations on the

ame subdomain.

.5. Analyzing results

Users must be able to verify that the results of an unchanged

ubdomain and the full domain are equivalent. The ‘Analyze Results’

odule of SMT provides users with the ability to compare subdomain

uns with the full domain run. Differences in elevation, velocity, and

et/dry status can easily be displayed as a color gradient on the sub-

omain mesh, and a playback tool allows users to interactively ani-

ate these differences through every timestep of the subdomain run

t which output was recorded. Additionally, users can select individ-

al nodes in order to view the exact elevation and velocity values

rom both the full and subdomain runs.

After a subdomain has been modified and a simulation performed,

he user must verify that variations in the hydrodynamics as a result

f the modifications have not propagated to the boundaries of the

ubdomains, as outlined in Section 2. The same tools provided for the

urpose of validating the initial, unmodified subdomain can also be

sed in the analysis of subdomains with modified topographies.

T. Dyer, J. Baugh / Advances in Engineering Software 92 (2016) 27–39 31

4

s

o

n

a

u

b

m

l

d

c

p

f

a

m

p

p

b

t

c

f

j

n

a

t

i

fi

W

s

w

t

g

c

i

4

d

f

f

t

o

g

t

o

w

w

a

o

a

o

n

T

c

i

w

f

o

Fig. 3. The SMT project structure.

Fig. 4. A subdomain displayed in SMT.

F
S
b

p

e

a

a

fi

A

i

e

a

f

c

c

a

u

A

p

m

. Backend development

Consistent with our intended goals, the SMT framework is de-

igned to be flexible and extensible. The framework, which relies on

bject oriented design principles, is comprised of three major compo-

ents. The first is the SMT backend, which is responsible for creating

nd maintaining subdomains and all related data. The second is the

ser interface framework, which is typically a platform dependent li-

rary, and the third is the graphics interface used to render ADCIRC

eshes.

Fig. 5 illustrates an overall architecture that accommodates cross-

anguage, multi-platform growth. In this paper the focus is on the

esktop implementation, written in C++ and Qt [14], which uses

ommon classes and design patterns, as described in Section 4.1, sim-

lifying the translation to other languages and platforms. High per-

ormance visualization of ADCIRC meshes is achieved using OpenGL,

s described in Section 4.2. OpenGL itself offers a cross-language,

ulti-platform API, so calling code is also easily transported across

latforms. However, because user interface libraries are typically

latform and language specific, the user interface component must

e designed with a specific platform in mind. This structure, wherein

he backend and rendering are separated from the user interface,

learly enhances flexibility and extensibility.

Connecting the backend of SMT to the user interface is straight-

orward using Qt’s signal/slot mechanism. Additionally, the Qt ob-

ect model provides convenient memory management capabilities. A

umber of other popular open-source user interface libraries, such

s GTK+ and wxWidgets were considered, but ultimately Qt provided

he right balance of user interface features and development tools,

ncluding a library specific IDE and debugger, with the added bene-

t of supporting multiple operating systems, allowing deployment to

indows, Mac, and Linux desktop environments.

In the following sections, we give an overview of some of the de-

ign patterns used in the backend of SMT, a description of the frame-

ork used for high performance visualization of ADCIRC meshes, and

he implementation details and performance metrics of the search al-

orithms used for node and element selection. Additionally, we dis-

uss possible alternative approaches and the reasoning behind the

mplementation decisions made during development.

.1. Object oriented design

The structure of the SMT backend relies heavily on object oriented

esign principles. Their use allows us to separate SMT functionality

rom platform and language specific features, such as the user inter-

ace framework, as well as providing glass-box extensibility.

The underlying class structure of SMT mirrors the project struc-

ure seen in Fig. 3. The class diagram in Fig. 6 shows a small portion

f the full SMT backend. We use UML [15], the Unified Modeling Lan-

uage, a common notation in software development for describing

he relationships between classes. In the figure we see two such types

f relationships. The first is an aggregation, or a ‘has a’ relationship,

hich is indicated by a hollow diamond shape on the containing class

ith a single line that connects it to the contained class. The number

t each end of this line, called a multiplicity, indicates the number

f allowed instances of that entity in the relationship. For example,

Project can only have a single FullDomain, indicated by a 1

n the Project end, whereas a FullDomain can be a part of any

umber of Projects, indicated by a 1..∗ on the FullDomain end.

he second is a generalization, or an ‘is a’ relationship, which is indi-

ated by hollow triangle on the superclass with a line that connects

t to a subclass.

At the top level of our partial class diagram is a Project class

hich is largely responsible for communicating with the user inter-

ace, as it has access to all data associated with a project. An instance

f the Project class is required to contain an instance of a single
ullDomain class, and may contain any number of instances of the

ubDomain class. This directly reflects the project structure that can

e seen in Fig. 3.

The FullDomain and SubDomain classes both extend the

urely abstract Domain class. The Domain class provides all the gen-

ral functionality needed to access the data and functionality associ-

ted with an ADCIRC run. For example, ADCIRC requires, at minimum,

fort.14 file which contains the mesh definition and a fort.15
les which defines model control parameters in order to perform an

DCIRC run [7]. The data associated with these files is represented

n SMT by the Fort14 and Fort15 classes, respectively, and ev-

ry Domain instance has access to exactly one of each. Addition-

lly, various abstract method definitions needed by the user inter-

ace to interact with ADCIRC domains are provided by the Domain
lass. FullDomain and SubDomain inherit all of the data ac-

ess functionality of their superclass, but are required to implement

bstract methods like runAdcirc(). These implementations are

nique since they both require different file configurations for the

DCIRC run to be successful. The two subclasses are also free to im-

lement additional functionality. For example, the SubDomain class

akes use of two additional classes, Py140 and Py141, which are

32 T. Dyer, J. Baugh / Advances in Engineering Software 92 (2016) 27–39

Fig. 5. An architecture that accommodates cross-language, multi-platform growth.

Fig. 6. SMT partial class diagram.

4

O

3

c

p

t

t

o

g

b

t

r

i

r

o

n

r

4

b

w

s

w

f

d

u

t

s

B

d

n

t

4

m

g

f

p

f

a

responsible for providing access to the py.140 and py.141 files,

which are exclusive to subdomain ADCIRC runs.

Structuring the code using object-oriented principles provides

multiple levels of glass-box extensibility. Each ADCIRC file format has

a corresponding class which is responsible for I/O operations in ad-

dition to data specific functionality. For example, the Fort14 class

is capable of reading and writing fort.14 files, as well as perform-

ing searches over mesh data. This broad level of extensibility allows

developers to freely use and build upon this functionality without re-

quiring any specific ties to subdomain modeling or SMT. Developers

who require more in-depth functionality could, for example, use the

FullDomain class and all classes that it depends on to incorporate

the data and functionality of a full domain in their projects, again,

without requiring any ties to subdomain modeling or SMT. Addition-

ally, because the functionality has been implemented with standard

types and common programming idioms, the backend that powers

SMT is easily translated into different languages for use on different

platforms.
.2. Visualization

The visualization of large meshes in SMT is achieved using

penGL, a cross-language, multi-platform API for rendering 2D and

D graphics that is robust and well maintained. The OpenGL specifi-

ation describes an abstract API, defining a number of language inde-

endent functions. In addition, the specification contains nothing on

he subject of creating and managing a context for rendering, leaving

his task to the underlying windowing system. Therefore, the choice

f using OpenGL for rendering in SMT is consistent with the design

oal of providing a cross-language and multi-platform architecture.

In OpenGL, a basic rendering primitive is the triangle, large num-

ers of which may be arranged as a mesh in order to represent a

hree-dimensional surface. In ADCIRC, the earth’s surface is similarly

epresented using a triangulated irregular network, or TIN, which

s made up of irregularly distributed three-dimensional points ar-

anged in a network of non-overlapping triangles. This parallelism

f representation further makes OpenGL a natural choice over exter-

al graphics libraries that may employ different data structures for

epresenting surfaces.

.3. Search algorithm

The choice of search algorithm used in the selection tools provided

y SMT has a direct impact on user experience. The simplest approach

ould be to test each element one by one against the requested

hape, or in other words, to perform a brute force search; this works

ell when the number of elements in the dataset is small, but per-

ormance becomes worse as the size of the dataset increases. ADCIRC

omains, in order to sufficiently represent topography so that sim-

lation results are accurate, are typically on the order of millions to

ens of million of elements. A dataset this size can cause a brute force

earch to take seconds to complete on commonly available hardware.

ecause seamless user interaction is central to its functionality, the

esign of SMT strives to avoid perceptible system lags in responsive-

ess, and does so by employing a generalized range search algorithm

o provide sufficiently fast search results.

.3.1. Background

Range search algorithms are a class of algorithm used to deter-

ine the set of objects that fall inside or intersect with a query re-

ion [16]. In the context of SMT, this means the set of elements that

all within a drawn shape. The choice of range search algorithm de-

ends on several factors, including the number of searches being per-

ormed, the shape of the query range, the dimensionality of the data,

nd whether the dataset is static or dynamic [17]. While one can find

T. Dyer, J. Baugh / Advances in Engineering Software 92 (2016) 27–39 33

a

t

a

b

A

A

[

s

d

h

a

v

a

c

a

s

a

r

m

p

l

i

b

t

u

i

u

t

p

A

a

l

e

g

4

c

i

[

p

i

b

b

e

b

r

w

d

r

p

c

T

o

4

c

t

d

l

p

Fig. 7. Quadtree class diagram.

c

i

t

v

t

f
L
p

Q
b

t

i

t

t

e
e

i

o

4

t

t

I

t

e

q

variety of data structures for geometric range searches in the litera-

ure [16–18], most are specialized, having been developed to support

single type of query operation (i.e., a single shape).

In developing SMT, various libraries were considered for use as the

ackend for a range search algorithm. The Computational Geometry

lgorithms Library (CGAL) [18], the Library of Efficient Data types and

lgorithms (LEDA) [19], and the Mesh-Oriented datABase (MOAB)

20] each provide their own set of features that can be leveraged in

oftware such as SMT. All three libraries have built in data structures

esigned for finite element meshes, and CGAL and LEDA both provide

igh performance range searches for several basic shapes. However,

dditional shape searches beyond those provided require that a de-

eloper learn the library and implement the search using the library’s

vailable data structures. CGAL, for example, provides the Kd_tree
lass which implements range searching using a template method

nd a model of the concept FuzzyQueryItem, which allows a range

earch to be performed over essentially any shape and over data with

ny dimensionality. This generalization is powerful, but nevertheless

equires a mapping of the data being searched from its native for-

at (e.g., an ADCIRC mesh) into one the library can understand and

rocess. Further, while search capabilities can be crafted in existing

ibraries, their use adds a dependency on the library and potentially

ts implementation language as well, limiting the platforms that can

e readily targeted.

As an alternative, we make use of a custom quadtree data struc-

ure to facilitate high performance searching in SMT. Doing so allows

s to build and employ such structures without the need to mod-

fy or make unnecessary copies of the fundamental representations

sed by ADCIRC and OpenGL. The approach is general and versatile in

hat we have defined a minimum set of shape properties necessary to

erform a range search over a quadtree, as outlined in Section 4.3.5.

s with other tree-like structures, performance depends on balance

nd, thus, the spatial distribution of the dataset that it stores, yielding

ookup times that vary from linear to logarithmic. In practice, how-

ver, ADCIRC meshes are typically well distributed resulting in very

ood performance.

.3.2. Data structure

The range search algorithm operates on a quadtree structure that

ontains the full dataset. A quadtree is a hierarchical data structure

n which each internal node (a branch) contains exactly four children

16]. External nodes (leaves) contain the actual data, which in our im-

lementation is a set of either ADCIRC nodes or elements.

Physically, each branch and leaf in a quadtree represents a bound-

ng box in two dimensional space. The bounding box of the root

ranch, or the highest level branch, is equivalent to the bounding

ox of the dataset that is stored in the tree. The four children of

ach branch in the quadtree represents a subdivision of that branch’s

ounding box into four equal parts.

The recursive definition of a quadtree directly translates into the

ecursive algorithm used to build it. Beginning with an empty leaf

hose bounding box is equivalent to that of the full dataset, insert

ata points individually until the leaf reaches capacity. Once a leaf

eaches capacity, split it into four quadrants and partition the data

oints accordingly, effectively turning the leaf into a branch. This pro-

ess is repeated until all data points are stored in the quadtree [16].

he final structure of the quadtree will be dependent on both the size

f the dataset and the maximum capacity defined for a leaf.

.3.3. Quadtree implementation

The implementation of a quadtree used in SMT makes use of the

omposite design pattern, a way of using recursive composition such

hat there is no distinction between an object and its container. This

esign pattern is particularly useful here because, while branches and

eaves both store different types of data, the way they are used to

erform a search is essentially identical.
The composite design pattern is implemented using an abstract

lass that represents both primitives and their containers [21]. Shown

n the partial class diagram of Fig. 7 is an abstract Quadtree class

hat represents this container. This abstract class contains an instance

ariable and two methods:

• edgePoint - An instance variable defined as any arbitrary point

that falls on the edge of the Quadtree instance. The SMT imple-

mentation uses the northeast corner of the bounding box.
• intersects(Shape s) - A method that determines if the

given shape has an edge intersection with the boundaries of the

Quadtree instance. This method uses the shape properties, as

outlined in Section 4.3.5, to look for edge intersections.
• findPoints(Shape s, List l) - An abstract method to be

defined in any concrete subclass. This method, which is passed a

shape and a list, must find all data points contained by the sub-

class instance that fall within the shape and add them to the list.

Additionally, it must return true if it can determine that the entire

shape falls within its boundaries, and return false otherwise. As

will be seen in Section 4.3.6, this is the method that contains the

range search algorithm.

The Leaf and Branch classes are concrete subclasses of

he Quadtree class. In addition to an implementation of the

indPoints method, each stores a different type of data. The

eaf class contains a list of Points, which are the actual data

oints inserted into the quadtree. The Branch class contains a list of

uadtrees, which are the branch’s children, and there will always

e exactly four children in this list.

Not shown in the class diagram of Fig. 7 are the coordinates of

he bounding box describing the physical location of the Quadtree
nstance. The bounding box of the root Quadtree is equivalent

o the bounding box of the full dataset which it contains, and

he bounding box (and thus, the northeast corner used as the

dgePoint) of each child is calculated on the fly as they are gen-

rated through divisions along the axes. These coordinates are used

n the intersects(Shape s) method in determining if the edge

f a Quadtree intersects with the given shape.

.3.4. Range search theory

A range search over a hierarchical data structure such as a tree is

ypically performed as follows. Starting from the root, check whether

he search region intersects with (or contains) the current tree node.

f it does, check the children; if not, none of the leaf nodes below

his node can possibly be of interest. This quickly prunes away irrel-

vant portions of the dataset [17]. There are three basic properties of

uadtrees that allow this type of search to be performed:

• If a quadtree falls completely within an arbitrary shape, all of the

data points contained by that quadtree are also guaranteed to fall

within the shape.

34 T. Dyer, J. Baugh / Advances in Engineering Software 92 (2016) 27–39

Algorithm 1: Node Search Method (Branch).

Method findPoints(Shape shape, List list)

1 if this.intersects(shape) then
2 for child in this.children do
3 child.findPoints(shape, list);

4 return false;

5 else
6 if this.contains(shape.edgePoint) then
7 for child in this.children do
8 if child.findPoints(shape, list) then
9 return true;

10 return true;

11 if shape.contains(this.edgePoint) then
12 for child in this.children do
13 child.addPointsToList(list);

14 return false;

Algorithm 2: Node Search Method (Leaf).

Method findPoints(Shape shape, List list)

1 if this.intersects(shape) then
2 for point in this.points do
3 if shape.contains(point) then
4 list.add(point);

5 return false;

6 else
7 if this.contains(shape.edgePoint) then
8 for point in this.points do
9 if shape.contains(point) then

10 list.add(point);

11 return true;

12 if shape.contains(this.edgePoint) then
13 list.add(this.points);

return false;

o

t

y

s

d

t

s

m

T

m

f

o

t

i

i

c

a

i

7

p

v

• If an edge of a quadtree intersects with any edge of an arbi-

trary shape, the data points contained by that quadtree might fall

within the shape.
• If a quadtree does not fall completely within or intersect with an

arbitrary shape, all of the data points contained by that quadtree

are guaranteed to not fall within the shape.

So, in order to implement a shape search, one simply needs to be

able to test for an intersection between that shape and the rectangu-

lar bounds of a quadtree. An intersection, in this case, is defined as

both edge intersection and fill intersection, meaning that a quadtree

fully contained inside of a shape is considered an intersection, for

example.

Shapes such as rectangles, triangles, circles, or polygons, will each

perform these tests in a unique way, and thus are typically given

unique implementations of the range search. In order to avoid the

need to implement unique search implementations for each shape,

we have determined a minimum set of shape properties required by

the search algorithm. Any shape which provides these properties can

be used to perform a range search.

4.3.5. Generalized shape requirements

In order to provide a range search algorithm that can be used with

any arbitrary shape, a single data point and two tests are required.

These three properties, which are defined in SMT through an abstract

Shape class, are as follows:

1. The location of any single arbitrary point on the shape’s edge:

Point Shape::edgePoint
2. A test to determine if a point falls inside of the shape:

bool Shape::contains(Point p)
3. A test to determine if a line segment intersects with the shape:

bool Shape::intersects(Point p1, Point p2)

Note that in its implementation of the intersects(Shape s)
method, the Quadtree class simply uses the third test to determine

whether any of its four edges intersect with the shape.

By using an abstract Shape class, developers are fully removed

from the implementation details required by the search algorithm

that are not necessary for customization. Providing hooks into the

search functionality through these abstractions falls in line with

goal of providing glass-box extensibility, a design goal outlined in

Section 2.2.

4.3.6. Performing a search

A search using the generalized range search algorithm begins by

calling the findPoints method of the root quadtree, passing in the

shape to be searched, as well as an empty list that will be populated

by the data points that fall inside of the shape. If the root quadtree is

in fact a branch, the code outlined in Algorithm 1 will be executed. Be-

ing a recursive algorithm, this same findPoints method is called

on the branch’s children quadtrees. If the child is another branch, the

code in Algorithm 1 is executed, whereas if the child is a leaf, the code

in Algorithm 2 is executed.

The tests performed in both algorithms, as outline below, are iden-

tical, but the actions performed at the result of each test differs based

on whether it is being performed by a branch or a leaf.

Test 1: Edge intersection. First, a test is performed to determine

whether any of the four edges of the quadtree intersects with the

edge of the shape. If there is an intersection, the only conclusion that

can be drawn is that any data contained by the quadtree may fall in-

side of the shape. Therefore, if the test was performed on a branch

(Line 1, Algorithm 1), recursion is started on each of the branch’s chil-

dren. If the test was performed on a leaf (Line 1, Algorithm 2), each

data point contained by that leaf is tested individually in order to de-

termine if it falls within the shape. If it does, it is added to the list,
therwise it is ignored. In both cases, false is returned, indicating that

he precise location of the shape in relation to the quadtree has not

et been determined.

If, on the other hand, it is determined that there is no edge inter-

ection between the shape and the quadtree, one of three possible de-

uctions can be made. Either the quadtree contains the entire shape,

he quadtree falls completely inside of the shape, or the quadtree and

hape are entirely disjoint. The following two tests are used to deter-

ine which of these cases is true.

est 2: Quadtree contains shape. Because it has already been deter-

ined that there are no edge intersections, if any arbitrary point that

alls on the edge of the shape is contained inside of the bounding box

f the quadtree being tested, it can be concluded that the entirety of

he shape must be fully contained inside of the quadtree. From this,

t can be concluded that any data contained by the quadtree may fall

nside of the shape.

If the test was performed on a branch, all four children are re-

ursed upon (Lines 6–10, Algorithm 1). If the test was performed on

leaf, however, each data point contained by the leaf must be tested

ndividually in order to determine if they fall within the shape (Lines

–11, Algorithm 2).

Additionally, once either the recursion on all four children is com-

lete or all data points have been tested, true is returned. This truth

alue indicates that the precise location of the shape in relation to

T. Dyer, J. Baugh / Advances in Engineering Software 92 (2016) 27–39 35

t

c

q

e

T

s

h

m

o

e

A

a

l

d

f

l

m

s

d

r

t

i

s

w

o

4

i

r

s

t

c

t

fi

e

s

d

s

(

p

d

o

a

m

c

d

a

s

i

o

m

q

r

v

i

d

t

t

r

Fig. 8. Shape search performance results.

p
o

f

s

h

1

p

b

s

g

w

p

m

s

t

t

H

t

s

i

n

a

a

b

l

o

S

S
d

c

t

t

c

s

s

s

t

w

a

a

e

i

he quadtree has been determined. More specifically, at this point it

an be concluded that the entire shape falls completely within this

uadtree, so there is no need to continue searching at any other lev-

ls of recursion.

est 3: Shape contains quadtree. If the quadtree does not contain the

hape, determining which of the two remaining possible conditions

olds true can be done using a single test. Because it has been deter-

ined that there are no edge intersections, if any point on the edge

f the quadtree falls inside of the shape, it can be deduced that the

ntire quadtree must fall entirely inside of the shape.

If the test passes and was performed on a branch (Line 11,

lgorithm 1), every data point in all of the branch’s children can be

dded to the list without performing any additional tests, and simi-

arly, if the test was performed on a leaf (Line 12, Algorithm 2), every

ata point contained by the leaf can be added to the list without per-

orming any tests. In either case, false is returned because the precise

ocation of the shape in relation to the quadtree has not been deter-

ined.

On the other hand, if the test fails, it can be concluded that the

hape and quadtree are completely disjoint and the quadtree and any

ata it or any of its children may contain is completely ignored for the

emainder of the search.

Once the findPoints method call to the root quadtree returns,

he search is complete and the list that was passed to the method

s now populated with the subset of the data that falls inside of the

hape. Additionally, the return value of the method call indicates

hether or not the shape used in the search falls completely inside

f the bounding box of the dataset.

.3.7. Search performance

The design of the range search algorithm implementation used

n SMT aims to provide a robust, extensible search that can provide

esults to the user in a near instantaneous fashion. As mentioned,

tudies have shown that the perceptual processing time constant, or

he largest amount of time between an action and a reaction that

an go unnoticed, is 100 milliseconds. Targeting this 100 ms search

ime provides a benchmark for testing across multiple hardware con-

gurations and mesh sizes. Additionally, because subdomain mod-

ling typically involves performing selections on a very small sub-

et of a full domain, better performance on smaller selections is

esirable.

The expected performance of the algorithm depends heavily on the

tructure of the quadtree being searched as well as the solution size

i.e., the number of elements found by the search). Calculating the ex-

ected performance of the search algorithm for any given scenario is

ifficult because it is not possible to know a priori the final structure

f the full quadtree or the subset of the full quadtree that will actu-

lly be reached for any given search. However, we do know that the

inimum depth of a quadtree for N > 1 data points is [log4(n)], indi-

ating a perfectly balanced quadtree [22], and that a well distributed

ataset, such as the nodes of an ADCIRC mesh, will produce a well bal-

nced quadtree. Additionally, because the algorithm is a depth-first

earch, we know that the worst case performance is O(|E|) where |E|

s the number of edges traversed during the search (i.e., the number

f recursive calls made) [23,24]. Therefore, we can expect the perfor-

ance of the algorithm to be directly proportional to the number of

uadtree branches or leaves that are visited during a search. For this

eason, the ordering of the tests in the algorithm is designed to avoid

isiting as many unnecessary branches or leaves as possible by prun-

ng large portions of the full dataset.

Variability in the actual performance of the algorithm is highly

ependent on the shape being used to perform a search. The ac-

ual tests performed at each level of recursion are implementa-

ion specific, so performance of the algorithm as a whole is di-

ectly proportional to how well the Shape::contains(Point
) and Shape::intersects(Point p1, Point p2) meth-

ds perform.

In order to demonstrate this variability, we compare the per-

ormance of our implementation of a circle, rectangle, and polygon

earch. The system on which all of the following tests are performed

as an Intel Core i7 (2.8 GHz) CPU with 8 GB of RAM running Ubuntu

2.04. Each of the shapes is tested using an ADCIRC mesh with ap-

roximately 5 million nodes and 10 million elements, and a quadtree

ucket size of 250 nodes is used. 1000 random variations of each

hape are generated and the shape searches are tested using each

enerated shape. The polygon used in these tests are all generated

ith 30 edges. Each individual search is timed and the results are

lotted on log-log axes, where the x-axis contains the number of ele-

ents found in any given search, and the y-axis contains the time in

econds required to find those elements.

As can be seen from the results, shown in Fig. 8, an increase in

he number of elements found by a search, and thus an increase in

he number of edges followed, results in a slower search, as expected.

owever, the circle and rectangle searches perform much better than

he 30-edge polygon search. The slower performance of the polygon

earch can be attributed to the following two factors. First, differences

n the geometric complexity of the shapes being tested can result in

oticeably different levels of performance. Because circles and rect-

ngles are very simple shapes, they are much more likely to initi-

te an early exit from the algorithm by falling completely inside of a

ranch or leaf. The 30-edge polygon, on the other hand, is much more

ikely to have intersections with the edges of the branches and leaves

f the quadtree, making it much less likely to initiate an early exit.

econd, the complexity of the Shape::contains(Point p) and

hape::intersects(Point p1, Point p2) methods has a

irect impact on the performance of the algorithm as a whole. The

ircle and rectangle search implementations use very simple tests

hat require relatively little processing power. The circle search uses

he Pythagorean Theorem to determine if a point falls within the cir-

le and the parameterized equation of a line to determine if a line

egment intersects with the edge of the circle. The rectangle search

imply uses a bounds test to implement both methods. The polygon

earch, on the other hand, takes quite a bit more processing power

o complete these tests. In order to determine if a polygon intersects

ith a line segment, each edge of the polygon is tested individually

gainst the line segment, looking for an intersection. In the case of

30-edge polygon being tested against a branch or leaf with four

dges, this could result in 120 individual tests. In order to determine

f a point falls within a polygon, this implementation uses the highly

36 T. Dyer, J. Baugh / Advances in Engineering Software 92 (2016) 27–39

Fig. 9. Comparison of quadtree build time with average search time.

5

s

e

w

n

t

C

v

u

i

r

M

o

w

s

u

r

5

t

a

a

m

c

m

c

t

a

v

w

s

a

s

t

t

compact and very fast PNPOLY algorithm [25,26]. Performing a single

test using this algorithm requires looping through every vertex of the

polygon, which in this case means looping through and performing

calculations at 30 individual vertices. As a result of the high complex-

ity of these two tests as compared to the tests performed by the circle

and rectangle searches, a significant decrease in performance of the

algorithm is observed.

The plotted results also show that almost every search returns re-

sults faster than the 100 ms benchmark laid out in the design spec-

ifications. The exceptions are 30-edge polygon searches in which an

extremely large number of elements were found. In the context of

subdomains, this could be considered a fringe case, as users typically

select a much smaller fraction of elements for subdomains, and the

use of a 30-edge polygon to perform these selections is highly exces-

sive. The performance curve of the algorithm is leveraged in typical

subdomain modeling scenarios. Selections using simple shapes can

be made in areas of extremely high refinement, which may contain

millions of elements while only occupying a small percentage of the

physical area of a mesh, and results appear to come instantaneously.

4.3.8. Effect of bin size on performance

An important factor in determining the scale of the performance

of the search algorithm is the bin size used to build the quadtree. The

bin size, which is the maximum number of data points added to a

leaf before it is split into a branch, is directly responsible for the final

structure of the quadtree. Because the performance of the search al-

gorithm is directly related to the structure of the quadtree on which

a search is being performed, the choice of bin size has an impact on

the overall performance of the search algorithm, and thus the respon-

siveness of the selection tools.

There is an significant trade-off to consider when choosing the

bin size of a quadtree. The closer the bin size is to the size of the full

dataset, the less likely it is for a portion of that dataset to be pruned

during the search process. Additionally, the data points contained by

leaves that have edge intersections with the shape being searched

must be tested individually against the shape. Therefore, a larger bin

size means a larger portion of the dataset will undergo brute force

testing, which is undesirable. On the other hand, the closer the bin

size is to one (i.e., a leaf is only allowed to hold a single data point),

the longer it takes to build the quadtree. Furthermore, an extremely

small bin size will result in a very deep tree, which tends to ex-

aggerate the quality of the Shape::contains(Point p) and

Shape::intersects(Point p1, Point p2) implementa-

tions because the number of recursive calls becomes extremely

high.

This performance trade-off is demonstrated in Fig. 9. Each data

point, labeled by bin size, shows the average time it takes to per-

form a single element search using the search algorithm versus the

time it takes to build the quadtree on which that particular search

is performed. This data is generated from eight different quadtrees,

each built using the same 5 million node, 10 million element mesh.

In each of these quadtrees, 10,000 individual element searches

were performed in order to calculate the average element search

time.

As expected, there is a trade-off between the time it takes to build

a quadtree and the average time it takes to complete a search on

that quadtree. It should be emphasized that this trade-off is going to

differ not only between hardware configurations, but also between

meshes and shape implementations. Therefore, it is the developer

who should choose a bin size that is most relevant to the applica-

tion. From the user’s perspective in an application such as SMT, it

may be desirable to remove a few seconds of loading time at the ex-

pense of a few milliseconds of responsiveness during element selec-

tion, whereas an application that will be programmatically perform-

ing millions of searches over a single quadtree may benefit signifi-

cantly from a few extra seconds of preprocessing.
. Case study

The following case study demonstrates the effectiveness of the

ubdomain modeling technique by using SMT to create and run sev-

ral subdomains. In this particular example, we consider a modeler

hose work is focused on two specific areas: a small portion of marsh

ear Bald Head Island in the Outer Banks of North Carolina, and a por-

ion of the New River extending from its inlet on the coast of North

arolina to Jacksonville, NC.

In the case of the Bald Head Island marshes, the modeler wishes to

ary Manning’s n along the river bank over a number of ADCIRC sim-

lations to determine the materials ecologically best suited to lower-

ng water velocities during a hurricane event. The modeler expects to

un at least ten different simulations, each with a different value of

anning’s n in the region of interest.

In the case of the New River, she wishes to examine the effects

f several possible beach nourishment projects on surge heights and

ater velocities through the inlet and along the river bank during a

torm event. This study involves at least five different ADCIRC sim-

lations, each with minor changes made to nodal elevations at the

iver’s inlet.

.1. Creating the subdomains

Working with subdomains in SMT begins with a new project and

he selection of a full domain. A full domain is chosen by selecting

fort.14 and fort.15 file using the ‘Create New Project’ dialog,

nd optionally associating additional ADCIRC files with the full do-

ain.

Once the project has been created, the modeler is ready to begin

reating subdomains. Choosing an appropriate subdomain size is a

atter of judgment, though subdomains of different sizes and shapes

an be created and extracted simultaneously from a full domain when

he extent of hydrodynamic effects of modifications are difficult to

nticipate.

In the Bald Head Island region, the modeler is only varying the

alue of Manning’s n and does not expect the resulting changes in

ater velocity to propagate far, allowing her to create a very small

ubdomain, as shown in Fig. 10a. Once the subdomain has been cre-

ted, any number of duplicates can be added to the project; Fig. 10c

hows eleven of them, one left unmodified for purposes of verifica-

ion, and ten others named according to the new value of Manning’s n

hat will be used in the area of interest.

T. Dyer, J. Baugh / Advances in Engineering Software 92 (2016) 27–39 37

Fig. 10. (a) The modeler has selected the subdomain nodes for the Silver Lake region. (b) The modeler has selected the subdomain nodes for the Masonboro Inlet. (c) The modeler

has created all eleven copies of the Silver Lake subdomain. (d) The modeler has created all subdomains needed for this study.

m

b

d

d

f

F

5

p

c

a

u

For the New River Inlet study area, the modeler anticipates

ore substantial changes will be made to the mesh resulting in a

roader extent of their effects, and therefore chooses a larger sub-

omain size, as shown in Fig. 10b. After creating all duplicate sub-

omains, including one for verification, the modeler now has the

ull set of subdomains listed within the Project Explorer shown in

ig. 10d.
Fig. 11. The modeler will run the unchanged subdomains fo
.2. Running ADCIRC and editing subdomains

With all of the subdomains created, the modeler is now ready to

erform the full domain ADCIRC run, which will record the boundary

onditions for both the Bald Head Island and New River Inlet study

reas. As each unique subdomain was created by the modeler, SMT

pdated the files necessary to initiate the recording of the boundary
r verification before running the altered subdomains.

38 T. Dyer, J. Baugh / Advances in Engineering Software 92 (2016) 27–39

Table 1

Comparison of the three domains used in this case study.

Domain # Nodes # Elements % Full

Domain

Runs CPU-hours/

run

Full domain 620,089 1,224,714 100.0 1 1,080

New river 28,681 56,907 4.6 6 42

Bald head

island

8,918 17,547 1.4 11 12

m

t

e

m

b

i

a

i

S

t

f

m

a

p

a

d

e

t

f

c

fl

c

i

t

t

i

i

r

r

A

f

t

f

o

a

S

2

a

r

R

conditions during the full domain run. So, the modeler simply needs

to initiate the full domain run as normal, either from the command

line or using the ADCIRC module in SMT. During the full domain run,

the modeler may begin making changes to the subdomain meshes

using either the simple tools provided by SMT in the ‘Edit Subdomain’

module, or an external mesh editing tool such as SMS. It should be

noted that if the unmodified subdomain is unable to be verified, these

modifications will either be lost or another tool must be used to insert

them into a larger iteration of the subdomain.

Once the full domain run and the verification step have been com-

pleted, any of the modified subdomain runs can be performed. SMT

allows modelers to select a set of subdomain runs to be performed,

as shown in Fig. 11. When running a subdomain, SMT applies the ap-

propriate boundary conditions that were recorded during the full do-

main run.

A summary of the three ADCIRC domains being used in this case

study is presented in Table 1. The computational benefits of using the

subdomain modeling technique can be seen by comparing the full

domain run to the subdomain runs and considering the number and

sizes of the ADCIRC runs required by the modeler. Without using sub-

domains, almost 20,000 CPU-hours would be required to perform the

18 runs, in contrast with the approximately 1,128 CPU-hours actually

used. The time cost to the modeler in setting up and extracting sub-

domains is minimal: about 15 min for each of the two study areas

presented using only SMT.

6. Conclusion and future work

Simulating the effects of storm surge in hurricane-prone regions

is essential for determining the weaknesses of civil infrastructure sys-

tems and identifying protective measures that can strengthen them.

The science of storm surge modeling, with some refactoring, can

be effectively employed for use in engineering infrastructure assess-

ment, despite its computational demands. Using subdomain model-

ing, large-scale simulations can be performed on multiple, alternative

topographies with much less computational cost than would other-

wise be required. We describe an interface that allows modelers to

take full advantage of the subdomain modeling technique through an

interactive and visual environment. It removes the tedium and error-

prone nature of manual subdomain creation and data management

so that users are better able to focus on design and analysis of storm

resilient infrastructure.

Regarding implementation, instead of creating a block-box li-

brary of functionality, the SMT codebase is written to be re-editable,

providing glass-box extensibility that allows functionality to be ex-

tracted and used in essentially any language or on any platform. We

have made use of this capability on multiple occasions, which speaks

to the versatility accommodated by its design. We have used pieces

of the SMT code to create an ADCIRC visualization and scripting pro-

gram, exposing ADCIRC simulation data to a Python scripting inter-

face, a tool that has been useful in querying ADCIRC datasets. Addi-

tionally, much of the SMT functionality has been translated into Java,

with the idea that certain features could be useful in a mobile ap-

plication, as well as into Javascript, as a step toward providing a full

featured, web-based version of SMT.
While SMT provides a streamlined workflow, we understand that

odelers may wish to rely on complementary tools to complete their

asks. For instance, in order to take advantage of the subdomain mod-

ling workflow, one must be able to make modifications to subdo-

ain meshes. SMT provides a very basic nodal attribute editing tool,

ut is not currently equipped for extensive mesh processing. Exist-

ng software, such as SMS, provide more capable mesh editing tools,

nd their wide acceptance within the ADCIRC community means it

s likely modelers will already be familiar with their use. However,

MT has been designed with these features in mind, and two sophis-

icated methods of re-meshing and mesh refinement are being tested

or inclusion in SMT, with the goal of inserting new physical or geo-

etric features into subdomains. The first is a heuristic method that

ttempts to insert a feature into the existing subdomain mesh while

reserving as much of the original mesh as possible, and the second

llows a modeler to completely remove an interior portion of the sub-

omain mesh in order to insert a higher quality mesh feature in the

mpty location and generate a smooth gradation of elements in order

o connect the surrounding subdomain mesh with the newly inserted

eature mesh.

Other improvements left for future work include client-server ac-

ommodation that reduces potential data movement in some work-

ows. ADCIRC simulations are often performed in parallel on HPC

lusters with extensive computing power and storage capacity, and

n many cases these clusters are accessed over a network. In this case,

he full domain mesh file and all subdomain files are transferred over

he network in order to use them in SMT. Doing so could be limit-

ng due to the size of the files and/or network speeds. We hope to

mplement a server-side SMT client that allows all data processing to

emain on the server while allowing the user to interact with the data

emotely through SMT.

cknowledgments

The authors thank Rick Luettich and Brian Blanton for their helpful

eedback and for providing the base files used in this study, including

he NC FEMA meshes and wind files. We also thank Alper Altuntas

or his work generating both data and images, and Lake Trask for his

ngoing work in developing mesh editing tools for SMT.

This material is based upon work supported by the Coastal Haz-

rds Center of Excellence, a US Department of Homeland Security

cience and Technology Center of Excellence under Award Number

008-ST-061-ND 0001. The views and conclusions contained herein

re those of the authors and should not be interpreted as necessarily

epresenting the official policies, either expressed or implied, of DHS.

eferences

[1] Baugh J, Altuntas A, Dyer T, Simon J. An exact reanalysis technique for storm surge
and tides in a geographic region of interest. Coast Eng 2015;97(0):60–77. doi:10.

1016/j.coastaleng.2014.12.003.

[2] Blain CA, Westerink JJ, Luettich RA. The influence of domain size on the re-
sponse characteristics of a hurricane storm surge model. J Geophys Res Oceans

1994;99(C9):18467–79. doi:10.1029/94JC01348.
[3] Luettich RA, Westerink JJ. Formulation and numerical implementation of the

2D/3D ADCIRC finite element model version 44.xx. http://www.unc.edu/ims/
adcirc/publications/2004/2004_Luettich.pdf, 2004 (accessed 28.10.15).

[4] Tanaka S, Bunya S, Westerink J, Dawson C, Luettich J, R A. Scalability of an unstruc-

tured grid continuous Galerkin based hurricane storm surge model. J Sci Comput
2011;46(3):329–58. doi:10.1007/s10915-010-9402-1.

[5] Westerink JJ, Luettich RA, Feyen JC, Atkinson JH, Dawson C, Roberts HJ, Powell MD,
Dunion JP, Kubatko EJ, Pourtaheri H. A basin- to channel-scale unstructured grid

hurricane storm surge model applied to southern Louisiana. Mon Weather Rev
2008;136(3):833–64.

[6] Luettich RA, Westerink JJ. Elemental wetting and drying in the ADCIRC hydrody-
namic model: Upgrades and documentation for ADCIRC version 34.xx. Technical

Report. Department of the Army, U.S. Army Corps of Engineers, Waterways Exper-

iment Station, Vicksburg, MS; 1999.
[7] The official ADCIRC web site. http://adcirc.org (accessed 28.10.15).

[8] Altuntas A. Downscaling storm surge models for engineering applications,
Raleigh, NC: North Carolina State University; 2012. Master’s thesis.

[9] Aquaveo. http://aquaveo.com (accessed 28.10.15).

http://dx.doi.org/10.1016/j.coastaleng.2014.12.003
http://dx.doi.org/10.1029/94JC01348
http://www.unc.edu/ims/adcirc/publications/2004/2004_Luettich.pdf
http://dx.doi.org/10.1007/s10915-010-9402-1
http://refhub.elsevier.com/S0965-9978(15)00142-8/sbref0004
http://refhub.elsevier.com/S0965-9978(15)00142-8/sbref0004
http://refhub.elsevier.com/S0965-9978(15)00142-8/sbref0004
http://refhub.elsevier.com/S0965-9978(15)00142-8/sbref0004
http://refhub.elsevier.com/S0965-9978(15)00142-8/sbref0004
http://refhub.elsevier.com/S0965-9978(15)00142-8/sbref0004
http://refhub.elsevier.com/S0965-9978(15)00142-8/sbref0004
http://refhub.elsevier.com/S0965-9978(15)00142-8/sbref0004
http://refhub.elsevier.com/S0965-9978(15)00142-8/sbref0004
http://refhub.elsevier.com/S0965-9978(15)00142-8/sbref0004
http://refhub.elsevier.com/S0965-9978(15)00142-8/sbref0004
http://refhub.elsevier.com/S0965-9978(15)00142-8/sbref0005
http://refhub.elsevier.com/S0965-9978(15)00142-8/sbref0005
http://refhub.elsevier.com/S0965-9978(15)00142-8/sbref0005
http://adcirc.org
http://refhub.elsevier.com/S0965-9978(15)00142-8/sbref0006
http://refhub.elsevier.com/S0965-9978(15)00142-8/sbref0006
http://aquaveo.com

T. Dyer, J. Baugh / Advances in Engineering Software 92 (2016) 27–39 39

[

[

[

[

[

[

[10] Card SK, Robertson GG, Mackinlay JD. The information visualizer, an informa-
tion workspace. In: Proceedings of the SIGCHI conference on human factors in

computing systems, CHI ’91; 1991. p. 181–6. ISBN 0-89791-383-3. doi:10.1145/
108844.108874.New York, NY, USA: ACM

[11] Card SK. The psychology of human-computer interaction. Hillsdale, N.J.: L. Erl-
baum Associates; 1983.

[12] Shneiderman B. Direct manipulation: a step beyond programming languages.
Computer 1983;16(8):57–69. doi:10.1109/MC.1983.1654471.

[13] Zenger M. Programming language abstractions for extensible software compo-

nents, Lausanne, Switzerland: Swiss Federal Institute of Technology; 2004. Ph.D.
thesis.

[14] Qt. http://qt-project.org (accessed 28.10.15).
[15] Rumbaugh J, Jacobson I, Booch G. The unified modeling language reference man-

ual. Pearson Higher Education; 2004.
[16] de Berg M, Cheong O, van Kreveld M, Overmars M. Computational ge-

ometry: Algorithms and applications. Berlin: Springer; 2008. doi:10.1007/

978-3-540-77974-2. ISBN 9783540779735 (hardcover : alk. paper); 3540779736
(hardcover : alk. paper)

[17] Skiena SS. The algorithm design manual, London: Springer; 2008.
ISBN 9781848000698 (hbk.); 1848000693 (hbk.); 1848000707 (ebook);

9781848000704 (ebook). doi:10.1007/978-1-84800-070-4.
[18] Basken M. 2D range and neighbor search. In: CGAL user and reference man-
ual. CGAL Editorial Board; 2015. http://doc.cgal.org/4.5.2/Manual/packages.html#

PkgPointSet2Summary (accessed 28.10.15).
[19] LEDA. http://www.algorithmic-solutions.com/ (accessed 28.10.15).

20] MOAB. ftp://ftp.mcs.anl.gov/pub/fathom/moab-docs/index.html.
[21] Emma E, Helm R, Johnson R, Vlissides J. Design patterns: Elements of

reusable object-oriented software. Reading, Mass.: Addison-Wesley; 1995. ISBN
9780201633610; 0201633612

22] Samet H. Foundations of multidimensional and metric data structures. Am-

sterdam ; Boston: Elsevier/Morgan Kaufmann; 2006. ISBN 0123694469;
9780123694461

23] Dyer T. An interface for subdomain modeling using a novel range search algo-
rithm for extracting arbitrary shapes, Raleigh, NC: North Carolina State Univer-

sity; 2014. Master’s thesis.
24] Jungnickel D. Graphs, networks, and algorithms. Heidelberg; New York: Springer;

2013. ISBN 9783642322778; 3642322778

25] Franklin WR. PNPOLY - point inclusion in polygon test. http://www.ecse.rpi.edu/
∼wrf/Research/Short_Notes/pnpoly.html (accessed 28.10.15).

26] Hormann K, Agathos A. The point in polygon problem for arbitrary polygons.
Comput Geom 2001;20(3):131–44. doi:10.1016/S0925-7721(01)00012-8.

http://dx.doi.org/10.1145/108844.108874
http://refhub.elsevier.com/S0965-9978(15)00142-8/sbref0008
http://refhub.elsevier.com/S0965-9978(15)00142-8/sbref0008
http://dx.doi.org/10.1109/MC.1983.1654471
http://refhub.elsevier.com/S0965-9978(15)00142-8/sbref0010
http://refhub.elsevier.com/S0965-9978(15)00142-8/sbref0010
http://qt-project.org
http://refhub.elsevier.com/S0965-9978(15)00142-8/sbref0011
http://refhub.elsevier.com/S0965-9978(15)00142-8/sbref0011
http://refhub.elsevier.com/S0965-9978(15)00142-8/sbref0011
http://refhub.elsevier.com/S0965-9978(15)00142-8/sbref0011
http://dx.doi.org/10.1007/978-3-540-77974-2
http://dx.doi.org/10.1007/978-1-84800-070-4
http://doc.cgal.org/4.5.2/Manual/packages.html#PkgPointSet2Summary
http://www.algorithmic-solutions.com/
ftp://ftp.mcs.anl.gov/pub/fathom/moab-docs/index.html
http://refhub.elsevier.com/S0965-9978(15)00142-8/sbref0015
http://refhub.elsevier.com/S0965-9978(15)00142-8/sbref0015
http://refhub.elsevier.com/S0965-9978(15)00142-8/sbref0015
http://refhub.elsevier.com/S0965-9978(15)00142-8/sbref0015
http://refhub.elsevier.com/S0965-9978(15)00142-8/sbref0015
http://refhub.elsevier.com/S0965-9978(15)00142-8/sbref0016
http://refhub.elsevier.com/S0965-9978(15)00142-8/sbref0016
http://refhub.elsevier.com/S0965-9978(15)00142-8/sbref0017
http://refhub.elsevier.com/S0965-9978(15)00142-8/sbref0017
http://refhub.elsevier.com/S0965-9978(15)00142-8/sbref0018
http://refhub.elsevier.com/S0965-9978(15)00142-8/sbref0018
http://www.ecse.rpi.edu/~wrf/Research/Short_Notes/pnpoly.html
http://dx.doi.org/10.1016/S0925-7721(01)00012-8

	SMT: An interface for localized storm surge modeling
	1 Introduction
	1.1 ADCIRC and subdomain modeling

	2 Background, functionality, and design goals
	2.1 Desired functionality
	2.2 Design goals

	3 GUI design
	3.1 Visualization
	3.2 Data management
	3.3 Subdomain modification
	3.4 Running ADCIRC
	3.5 Analyzing results

	4 Backend development
	4.1 Object oriented design
	4.2 Visualization
	4.3 Search algorithm
	4.3.1 Background
	4.3.2 Data structure
	4.3.3 Quadtree implementation
	4.3.4 Range search theory
	4.3.5 Generalized shape requirements
	4.3.6 Performing a search
	4.3.7 Search performance
	4.3.8 Effect of bin size on performance

	5 Case study
	5.1 Creating the subdomains
	5.2 Running ADCIRC and editing subdomains

	6 Conclusion and future work
	 Acknowledgments
	 References

