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Used to predict the effects of hurricane storm surge, ocean circulation models are 
essential tools for evacuation planning, vulnerability assessment, and infrastructure design. 
Implemented as numerical solvers that operate on large-scale datasets, these models 
determine the geographic extent and severity of coastal floods and other impacts. In this 
study, we look at an ocean circulation model used in production and an extension made to 
it that offers substantial performance gains. To explore implementation choices and ensure 
soundness of the extension, we make use of Alloy, a declarative modeling language with 
tool support and an automatic form of analysis performed within a bounded scope using 
a SAT solver. Abstractions for relevant parts of the ocean circulation model are presented, 
including the physical representation of land and seafloor surfaces as a finite element 
mesh, and an algorithm operating on it that allows for the propagation of overland flows. 
The approach allows us to draw useful conclusions about implementation choices and 
guarantees about the extension, in particular that it is equivalence preserving.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Coastal flooding from tropical storms is the result of large-scale processes whose simulation is computationally de-
manding. Ocean circulation models, which attempt to capture the resulting hydrodynamics as accurately and efficiently as 
possible, employ a variety of mechanisms that, while improving performance, can also lead to complex software imple-
mentations. Based on numerical techniques such as finite element methods [41], these models start from a characterization 
of wind velocities, atmospheric pressure, and land and seafloor surfaces to produce time histories of spatially varying wa-
ter surface elevations and velocities. Ocean circulation models are designed to perform these large-scale simulations while 
incorporating both tidal effects and more extreme storm events into the analysis.

As in other areas of science, validation of the models is based on observational comparisons and, as much as anything, 
review and evaluation by an active community of scientists and engineers. Quantities like wind, wave, and water level are 
compared with data from the National Data Buoy Center (NDBC), National Ocean Service (NOS) observation stations, high 
water marks, and other sources [23]. In addition to such studies, since 2008 a regional testbed has been actively comparing 
the accuracy of ocean circulation models and their relative abilities to hindcast the effects of historical storms [33].
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Fig. 1. Finite element mesh. Fig. 2. Domain � partitioned at interface �.

In this paper, our concern is the correctness of an extension made by our group to ADCIRC [29], an ocean circulation 
model widely used by the U.S. Army Corps of Engineers and others to simulate hurricane storm surge. ADCIRC itself has 
been extensively validated against actual flooding conditions, with simulation times of about a thousand or more CPU-hours.

To get a sense of the problem, the finite element mesh in Fig. 1 depicts a shoreline extracted from a larger domain that 
encompasses the western North Atlantic Ocean, the Caribbean Sea, and the Gulf of Mexico. The land and seafloor surfaces 
are represented as a collection of contiguous, non-overlapping triangles, or elements, that meet along their edges and at their 
vertices, or nodes. For this problem, 620 089 nodes and 1 224 714 elements appear in the full mesh. Forced with winds and 
tides, the physics of the model are realized in three primary routines that are executed in succession at each discrete time 
step. The first finds the water surface elevations for nodes in the domain using principles of momentum and continuity. 
Next, the wet–dry state of nodes is determined from empirical rules so that advancing and receding flood waters can be 
modeled. Finally, velocities are determined using momentum principles, completing one time step.

Our extension, now included in ADCIRC, is an exact re-analysis technique that enables the assessment of local subdomain
changes with less computational effort than would be required by a complete resimulation [7]. Fig. 2 shows a domain �
partitioned at interface � into a subdomain �I , representing the interior of a geographic region of interest, and �E . The 
technique starts with a simulation on � that produces water surface elevations, velocities, and wet–dry states that are used 
as boundary conditions along interface � in subsequent low-cost simulations on �I . We refer to the first simulation on �
as a full run, and the latter one on �I as a subdomain run. A correctness condition requires that boundary conditions be 
imposed in such a way that full and subdomain runs produce equivalent results in region �I .

1.1. Formal methods and verification

The tools and techniques most often associated with scientific computing are those of numerical analysis and, for large-
scale problems, structured parallelism to improve performance. Beyond those conventional tools, we also see a role for 
formal methods and present one such application here using the Alloy language and analyzer [25].

Alloy combines first-order logic with relational calculus and associated quantifiers and operators, along with transi-
tive closure. It offers rich data modeling features based on class-like structures and an automatic form of analysis that is 
performed within a bounded scope using a SAT solver. For simulation, the analyzer can be directed to look for instances 
satisfying a property of interest. For checking, it looks for an instance violating an assertion: a counterexample. The ap-
proach is scope complete in the sense that all cases are checked within user-specified bounds. Alloy’s logic supports three 
distinct styles of expression, that of predicate calculus, navigation expressions, and relational calculus. The language used 
for modeling is also used for specifying properties of interest and assertions.

Using Alloy, we model finite element domains and simulations on them so we can experiment with the type of boundary 
conditions that might be imposed on subdomain runs, as illustrated in Fig. 3. The upper left side of the figure represents 
ADCIRC as it might be employed without our extension: a Fortran implementation and, beneath it, a model of a simulation 
on �, a full domain. The upper right side of the figure represents our extension: a possible implementation and, beneath 
it, a model of a simulation on �I , a subdomain with boundary conditions imposed on �. At the bottom of the figure is a 
comparison between full and subdomain runs in Alloy, where the assertion SameFinalStates is checked to see whether they 
produce equivalent results in region �I . Through an iterative process, we seek an approach for boundary conditions that 
satisfies the assertion, and then we make use of the insights gained in an actual implementation of our extension, which 
we refer to as subdomain modeling.

We observe that other approaches to verification might also be considered. For instance, a mathematical statement of 
the equations of motion for bodies of water could be adopted as a specification. Because ocean circulation models are 
defined by a set of hyperbolic partial differential equations (PDEs) [41], however, asking whether an extension such as 
subdomain modeling implements it requires the tools of numerical analysis in a labor-intensive process that has already 
been undertaken for ADCIRC. Instead, we utilize the existing foundation and solve a simpler problem: show that the results 
of a subdomain run are equivalent to a full run in ADCIRC.
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Fig. 3. Verification approach for a subdomain modeling extension.

In doing so, we recognize that some aspects of showing equivalence are more challenging to reason about than others, 
and it is those that receive our attention here. For verifying our subdomain modeling extension, these include (a) the variety 
of mesh topologies that one may encounter, (b) the process of determining the wet–dry state of nodes in a mesh, and (c) 
the effects of partitioning a mesh at an interface and imposing boundary conditions. What we adopt, then, is a lightweight
approach to formal methods [27], in which there is both partiality in modeling, since we do not attempt to verify an entire 
finite element analysis system, and partiality in analysis, since the verification we perform is bounded. An additional aspect 
of lightweight formal methods is an incremental style of modeling, which Alloy supports by offering immediate feedback 
while models are being constructed. Our presentation follows the same incremental style we used in developing our models.

1.2. Organization of the paper

Originally outlined in a short conference paper [6] at ABZ 2016, our work is extended here to provide additional back-
ground on storm surge modeling, an introduction to Alloy language features as they are encountered, more facets of our 
modeling and verification approach, and examples of using the analyzer for simulation and checking. We also present a new 
approach for working with and comparing finite element meshes and an additional application of the model. For reference, 
the Alloy models presented herein are available online [1].

The current paper is organized as follows. Section 2 provides background on ADCIRC and our subdomain modeling 
extension, along with examples of their use in production and research. Section 3 presents a static model of a finite element 
mesh that can accommodate simulations without being tied to a particular mesh topology. Section 4 extends the model to 
include dynamic operations that determine wet–dry state using transition relations and an idiom employed to accommodate 
local state changes [25]. Section 5 models full and subdomain runs, and shows how boundary conditions can be imposed to 
achieve equivalence. Section 6 describes an alternative use of Alloy to gain insights into the behavior of empirical algorithms 
that can be difficult to find by simulation alone. Sections 7 and 8 close the paper with a discussion of related work and 
conclusions.

2. Background

To provide context for wet–dry computations and subdomain modeling, we begin by describing the discrete aspects 
of large-scale physical models that make tools like Alloy a potentially useful and complementary part of a computational 
scientist’s toolkit. We also include representative applications of ADCIRC and subdomain modeling as they are used in 
production and research.

2.1. ADCIRC’s wetting and drying algorithm

The subject matter of scientific programs often concerns the physical processes that surround us, where space and time 
are traditionally viewed as being continuous. Circulation of currents within the atmosphere and oceans, for instance, involves 
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Fig. 4. Mesh illustrating wetting front in reality and as seen by a numerical model [30].

Fig. 5. Dependencies in calculating wet–dry states.

state that is continuously varying and where, indeed, continuity arguments are used to “fill in” gaps that may be associated 
with sampled data.

The computational apparatus underlying ocean circulation models, however, looks less like purely analytic functions and 
more like an amalgam of discrete and continuous constructions that allow, as one example, the representation of irregular 
land and seafloor geometries as piecewise planar surfaces. The types of discretizations that may be employed in both time 
and space are varied, and each has its own performance, accuracy, and ease-of-development implications.

That problems such as these are discretized implies there is a level beneath which certain physical features and processes 
are not resolved—a modeling concern to be managed. But more than that, discretizing time and space means that contingent 
processes, like the continuous movement of the shoreline due to tides and storms—known as wetting and drying—require 
special handling to account for them in physically meaningful ways. To do so, ADCIRC uses an empirical algorithm [30] based 
on simplified physics to determine whether an element is wet, dry, or “partially” wet, as illustrated in Fig. 4. As a basis for 
that assessment, the algorithm first allows nodes to be wetted and dried, with wetting determined by a simple momentum 
balance and drying by a specified minimum water depth. Because of problems with mass balance and instabilities in regions 
with steep slopes, however, subsequent improvements in the algorithm have been made to address them and thereby 
prevent unrealistic consequences, such as the uninterrupted flow of a thin film of water [12,13].

In terms of implementation, ADCIRC’s wet–dry algorithm produces a series of state changes in nodes and elements at 
each time step before final wet–dry states can be determined. Fig. 5 illustrates topological dependencies that, combined 
with those state changes, complicate reasoning about the wet–dry algorithm and its interplay with mesh partitioning. 
Nodes internal and external to a subdomain are shown, as well as interface nodes that must be treated specially during a 
subdomain run and forced with data obtained from a full run: a boundary condition.

2.2. Subdomain modeling

Before a hurricane threatens a local community, it forms over the deep ocean, moves across the continental shelf, and 
pushes water onto the coastal floodplains. To accommodate this large-scale behavior, model domains typically span sizable 
parts of the globe, as the finite element mesh in Fig. 6 illustrates. Because the computational cost of even a single simulation 
can be high, and because separate runs are needed for every scenario considered, finding a way to reduce the cost of 
repeated runs is important.

Subdomain modeling relies on the observation that local changes to a mesh in a geographic region of interest have only 
local effects at the relevant time scales. As a result, for any change under consideration, a subdomain can be defined that 
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Fig. 6. Typical domain covering the Western North Atlantic, Caribbean Sea, and the Gulf of Mexico.

Fig. 7. Application of the Subdomain Modeling Tool [14] along the North Carolina Coast.

encompasses the area of influence of the change, together with boundary conditions determined from a prior simulation 
of the entire domain. Doing so allows us to analyze the effects of an incremental change at an incremental computational 
cost. Figs. 7a and 7b show the selection and extraction, respectively, of a subdomain along the North Carolina coast using 
the Subdomain Modeling Tool [14].

The extraction of a subdomain requires mesh partitioning and the imposition of boundary conditions, which may be 
formulated in a variety of ways. To be effective, the output obtained in full and subdomain runs must be equivalent within 
the geographic region of interest. By output, we mean the basic quantities produced by ADCIRC, i.e., water surface elevations, 
velocities, and wet–dry states at each node and for every time step. The nature of the computations is such that, of the 
three quantities, enforcing wet–dry states on boundaries is the most challenging and the one we tackle here.
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2.3. Applications of ADCIRC and subdomain modeling

Uses of ADCIRC in production include operations, planning, and design activities by the U.S. Army Corps of Engineers
(USACE), Federal Emergency Management Agency (FEMA), National Oceanic and Atmospheric Administration (NOAA), 
U.S. Coast Guard (USCG), and other agencies and engineering firms. Some prominent examples include the design of the 
$14.5 billion Hurricane and Storm Damage Risk Reduction System (HSDRRS) in Southern Louisiana by USACE that was com-
pleted in 2011 [36–38], the development of next-generation flood risk maps by FEMA to establish actuarial flood insurance 
rates and promote sound floodplain management [16], and assistance in making storm-related decisions by USCG that affect 
deployment locations and continuity of operations.

Subdomain modeling was incorporated in ADCIRC v51.42 in early 2015 and in experimental versions years ahead of 
that. In one of its earliest applications, subdomain modeling was used in post-Katrina studies by USACE’s Flood and Storm 
Protection Division, where the technique “yielded considerable time and cost savings in the calculations” when applied 
as part of an investigation to examine the effect of pumping discharge from the Western Closure Complex on storm surge 
levels along the downstream communities. The Western Closure Complex is a key component of the hurricane storm damage 
reduction system for New Orleans.

In other studies, subdomain modeling has been used to determine surface roughness coefficients that measure resistance 
to the flow of water as part of a formulation of a stochastic inverse problem [21]. Because of the computational expense 
in doing so, Graham [20] reduces the cost of a series of forward models using subdomain modeling in the Hurricane 
Gustav case study from about 3 300 to 11 CPU-hours. The authors note that “the work would not have been possible” 
without subdomain modeling. In another study, Haddad et al. [22] investigate factors affecting the behavior of storm surge 
in wetlands by combining field work and numerical modeling. While not reporting specific performance gains, the authors 
state that subdomain modeling can reduce the computational cost of repeated simulations that require adjustments to the 
mesh and the vegetation parameters in the regions of interest.

3. Statics: representing a mesh

Finite element methods [41] work by discretizing a continuous domain and approximating a solution over it with piece-
wise polynomial functions. The resulting mesh of elements and nodes can be thought of as a triangulation of a surface, with 
every node located in three-dimensional space.

While spatial attributes and physical quantities play a role in ADCIRC’s wet–dry algorithm, we separate concerns here 
and begin with a representation of mesh topology alone—with triangles and vertices as basic components—that we later 
embellish with other attributes, as dictated by the algorithm.

3.1. Mesh as a planar triangulation

A planar triangulation can be defined in Alloy as follows for arbitrary mesh topologies:

sig Mesh {
triangles: some Triangle,
adj: Triangle → Triangle

}

sig Triangle {
edges: Vertex → Vertex

}
sig Vertex {}

A signature in Alloy introduces both a type and a set of uninterpreted atoms, along with fields that define relations over 
them. In addition to defining a type, a signature’s name can also be used within an Alloy expression to denote the set of 
elements it defines.

In the declarations above, the signature Mesh has a field triangles that defines a binary relation over Mesh and Triangle; 
the multiplicity keyword some indicates that triangles associates at least one triangle with each mesh.1 A mesh m containing 
triangle t , then, would be represented by a tuple (m, t) in triangles. An additional field adj defines a ternary relation—using 
Alloy’s arrow operator—that contains the tuple (m, s, t) when a mesh m includes “adjacent” triangles s and t . Similarly, in 
signature Triangle, the field edges is a relation that contains the tuple (t, u, v) when a triangle t includes a directed edge 
from vertex u to v . The Vertex signature, on the other hand, contains no fields and therefore defines no additional relations. 
The sets Mesh, Triangle, and Vertex are referred to as top level and are therefore disjoint.

By way of example, a mesh with three triangles and five vertices that is consistent with the declarations above is shown 
in Fig. 8. In Alloy, sets are represented as unary relations, so a set of Triangle atoms appears as {(t0), (t1), (t2)}. Scalars are 
just a special case and are represented by unary relations with only one tuple. This instance and others are produced by 
the Alloy analyzer, allowing a user to see whether a given assignment of values to variables matches his or her intent. In 
this case, a meaningful interpretation can be given to the instance, which has the planar embedding shown in Fig. 9, with 
triangles that are defined by their directed edges, and edges that are defined by their incident vertices. The Alloy analyzer 

1 In a signature sig S { f: e }, if e is an expression denoting a set, it has a default multiplicity of one. In other words, sig S { f: e } and sig S { f: one e } 
are equivalent. Without the some keyword, then, the triangles field would associate just one triangle (exactly one) with each mesh.
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Fig. 8. An instance of a mesh in Alloy.

Fig. 9. A planar embedding of the instance as a 
mesh of triangles (t0, t1, and t2), vertices (v0, 
v1, v2, v3, and v4), and edges (in blue), with 
triangle adjacency (in red), cf. Figs. 8 and 10.

Fig. 10. The same instance displayed as a graph, with arcs that represent relations between atoms.

also provides a visual representation of the instance as a graph, with arcs that represent relations between atoms, as shown 
in Fig. 10, where the box notation ([ ]) used on arcs adj and edges is defined below.

Among Alloy’s operators is a generalized form of relational composition, dot join, which takes on its usual meaning in 
the expression p.q when p and q are binary relations. When p is a set or scalar, p.q is relational image, mirroring the 
navigation expressions commonly found in object oriented languages. So, for instance,

m0.adj = {(t0, t1), (t1, t0), (t1, t2), (t2, t1)}
where the scalar m0 is treated the same as {m0}, (m0), and {(m0)}: all are represented as {(m0)} in Alloy. Differing only 
syntactically from the dot operator is box join, where e1[e2] has the same meaning as e2.e1 for expressions e1 and e2, 
though with different precedence. So

m0.adj[t1] = t1.(m0.adj) = {(t0), (t2)}
That is, in mesh m0, the triangles adjacent to t1 are t0 and t2. In general, we require for any mesh m that m.adj be 
symmetric, irreflexive, and strongly connected.
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3.2. Adding constraints

Because other instances produced by Alloy may satisfy the signatures without having a valid interpretation, we must say 
more precisely what we mean by a mesh, and we do so using facts that constrain the possible assignments of values to 
variables. For instance, we require every triangle to have three (directed) edges with the universally quantified constraint:

fact { all t: Triangle | #t.edges = 3 }

where t.edges denotes the vertex pairs of triangle t , and where #r is the number of tuples in relation r.
Another basic requirement is that, for a mesh m, the adjacency relation m.adj is defined over its own set of triangles, 

m.triangles:

fact { all m: Mesh | dom[m.adj] + ran[m.adj] in m.triangles }

where dom[r] and ran[r] are the domain and range, respectively, of a binary relation r, and where + is set union.
For convenience in defining and working with meshes, we make use of their orientability, a property derived from their 

application to land and seafloor surfaces. When decomposing a surface into triangles, each can be oriented in a direction 
around its perimeter so that the edges of adjacent triangles point in opposite directions, as we saw in Fig. 9. A triangle’s 
edge set therefore forms a ring, which we can ensure by requiring (a) that each of its vertices has exactly one successor and 
(b) that all of them are reachable from any vertex by following edges repeatedly:

fact { all t: Triangle | ring[t.edges] }

pred ring [e: Vertex → Vertex] {
all v: dom[e] | one v.e and dom[e] in v.∧e

}

The term v.e is the set of successors of v , and the quantifier one requires that there be exactly one such successor for 
each vertex v . The term v.∧e denotes the vertices reachable from v using the transitive closure ∧e. Facts, which constitute 
constraints in Alloy that must always hold, can make use of predicates like ring, which are simply a way of packaging 
expressions for use by one or more facts.

Because triangles are oriented, we know that each of the edges in a mesh will be unique if we are to avoid overlapping 
triangles. That is, no mesh should include both (t, u, v) and (t’, u, v) in edges unless t = t’, or:

fact { all m: Mesh | all disj t, t’: m.triangles | no t.edges & t’.edges }

where disj makes t and t’ distinct, and where & is set intersection. Triangles with common anti-parallel edges define the adj
relation and, correspondingly, the dual of a mesh:

fact { all m: Mesh, t, t’: m.triangles | t in m.adj[t’] iff one ∼(t.edges) & t’.edges }

where ∼r is the transpose of binary relation r.
Intuitively, triangles are like basic building blocks of a mesh that can be glued together edge-to-edge when the edges 

are anti-parallel. The relation m.adj allows us to define the kind of connectivity we expect of a mesh m:

fact { all m: Mesh |
let r = m.adj, s = m.triangles |

symmetric[r] and irreflexive[r] and stronglyConnected[r, s] }

where symmetric, irreflexive, and stronglyConnected operate on binary relations and are provided by modules included in the 
Alloy library.

An additional constraint is necessary to ensure that a mesh is physically meaningful, in particular that it has a planar 
embedding. As employed by ocean modelers, a mesh is the product of a triangulation of a set of points in the plane, so it 
should therefore satisfy Euler’s formula for a simple polygon, whose characteristic equals one. By convention, such polygons 
are defined in terms of undirected graphs of vertices, edges, and faces that are, in our case, triangular. Thus, we require that 
V − E + T = 1, where V vertices, E (undirected) edges, and T triangles appear in a mesh. The mesh in Fig. 9, for instance, 
satisfies the formula, since V = 5, E = 7, and T = 3, with E being determined by ignoring edge direction and merging any 
common pairs in the obvious way.

In our representation, the number of undirected edges E can be found by subtracting half the number of interior edges, 
i.e., those that have an anti-parallel mate, from the total number of edges in a mesh:

fun undirectedEdges [m: Mesh]: Int {
let e = m.triangles.edges | minus[#e, div[#(∼e & e), 2]]

}
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Fig. 11. A menagerie of mesh topologies (up to T = 5).

where m.triangles.edges denotes all edges in mesh m, and where ∼e & e denotes just the interior ones. So, for the mesh in 
Fig. 9 we have E = 9 − 4/2 = 7 since there are 9 total edges and 4 interior ones: (v1, v2), (v2, v1), (v2, v3), and (v3, v2). 
From the figure, it should be clear that the number of tuples in m.adj always equals the number of interior edges.

Euler’s formula can then be expressed as follows:

fact { all m: Mesh |
let T = #m.triangles, E = undirectedEdges[m], V = #dom[m.triangles.edges] |

minus[T, 1] = minus[E, V] }

With our definition of a mesh complete, the Alloy analyzer produces the topologies shown in Fig. 11, where triangle 
edges are in blue and adjacency is in red; both are drawn without directions to keep the figures simple. For T triangles, all 
M distinct topologies are represented, with (T , M) = (1, 1), (2, 1), (3, 2), (4, 4), and (5, 7).

3.3. A simple check

Before moving on, one property we might like to check in Alloy is that our representation prevents the possibility of 
local “cut points,” where the effective width of a mesh is zero, i.e., where connectivity is maintained only by a single vertex. 
To do so, we define the two types of vertex that are valid in a mesh: those on the border of a mesh and those in the 
interior. Both can be characterized by the number of edges without anti-parallel mates that are incident on them, i.e., two 
in the case of border vertices, and zero for interior vertices:

pred borderVertex [m: Mesh, v: Vertex] {
let e = m.triangles.edges | #symDiff[e.v, v.e] = 2

}

pred interiorVertex [m: Mesh, v: Vertex] {
let e = m.triangles.edges | no symDiff[e.v, v.e]

}

where m.triangle.edges.v is the set of vertices directed to v , v.(m.triangle.edges) is the set of vertices directed from v , and 
symDiff [a, b] is the symmetric difference of sets a and b.

For instance, vertex v3 in Fig. 9 happens to be a border vertex, as do all the others in this mesh: the set of vertices 
directed to v3 are {(v2), (v4)} and from v3 are {(v1), (v2)}, and their symmetric difference is {(v1), (v4)}, meaning there 
are two edges without anti-parallel mates that are incident on v3, so it is indeed a border vertex.

Using the Alloy analyzer we can define and check assertions to see if they follow from the stated signatures and facts. 
Here, we state that every vertex must be either a border vertex or an interior one:

assert NoCutPoints { all m: Mesh, v: Vertex | borderVertex[m, v] or interiorVertex[m, v] }

noting that a cut point, by way of contrast, would have exactly four incident edges without anti-parallel mates. Because 
Alloy performs bounded verification, we must specify a scope for the analysis. To keep run times brief, we choose at most 
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Algorithm 1 Wetting and drying.

0: for e in elements do � initialization: start with all elements being wet
wete ← true

1: for n in nodes do � make nodes with low water column height dry
if Wn and Hn < Hmin then

Wn ← false, W t
n ← false

2: for e in elements do � propagate wetting across element
if ¬W i for exactly one node i on e and V ss(e) > Vmin then unless flow is slow

W t
i ← true

3: for e in elements do � allow water to build up
find nodes i and j of e with highest water surface elevations ηi and η j on an incline
if min(Hi , H j) < 1.2Hmin then

wete ← false

4: for n in nodes do � make landlocked nodes dry
if W t

n and n on only inactive elements then
W t

n ← false

5: for n in nodes do � set the final wet–dry state for nodes
Wn ← W t

n

6 triangles and 9 vertices, and Alloy finds and guarantees that there are no counterexamples within that scope in under a 
minute on a laptop computer with a 2.8 GHz Intel Core i7.

4. Dynamics: wetting and drying

Packaged as a module, the mesh representation given can now serve as an abstraction for finite element analysis and 
other computations that work on planar triangulations, where its components—triangles and vertices—are given interpre-
tations appropriate for the intended application domain. In the case of the wet–dry algorithm, we extend triangles and 
vertices with some but not all of the attributes that appear in ADCIRC itself, as needed.

In ADCIRC, a node can be viewed as a vertex located in a three-dimensional Euclidean space with x, y, z coordinates and 
with quantities like water surface elevation, velocity, and wet–dry state that vary with time, among others. An element can 
be viewed as a triangle in a plane defined by its incident nodes, along with its own wet–dry state and physical quantities 
that vary in time. To model the wet–dry routine, a node’s location in three-space is not required, as we show, but what is
required is a combination of mesh topology and a set of predicates over some of those physical quantities.

We begin by describing the wet–dry algorithm in an imperative style using pseudocode, which follows its expression in 
ADCIRC, albeit in an abstract manner. We then extend our Alloy model and specify the algorithm’s behavior declaratively 
using predicates that relate before and after states of its individual parts. Some simple simulations are then performed to 
gain confidence in the fidelity of the specification.

4.1. The wet–dry algorithm

Called at each time step, the wet–dry algorithm is a set of empirical rules that operate on a finite element mesh to 
determine which nodes participate in the calculation of physical properties in the next time step. Defined by Algorithm 1, it 
produces as output Wn for each node n and wete for each element e, Boolean variables that are set true when the associated 
component is considered “wet.” Taken together, Wn and wete determine whether or not there are numerical contributions 
in ADCIRC to the equations that calculate water surface elevations and velocities. Comments accompanying each part of the 
algorithm offer a glimpse at the simplified physics upon which the rules are based.

Looking at individual parts of the algorithm, we see that nodes have additional wet–dry states that are set and unset. 
These are denoted by W t

n , which is true when a node n is considered “temporarily wet.” Additionally, as part of the 
algorithm, an element is said to be active if and only if it is wet and has three temporarily wet nodes, and a node is 
landlocked if and only if it is incident only to inactive elements.

Though both nodes and elements have wet–dry states that are potentially of interest, only those pertaining to nodes are 
affected—and complicated—by mesh partitioning, the problem we are addressing. The wet–dry states of elements, on the 
other hand, are determined solely by physical quantities that are known to be correct through other, more straightforward 
means, as presented elsewhere [7]. So while they appear in our model of the algorithm, we may safely focus our attention 
on Wn values as the algorithm’s output, which are compared in full and subdomain runs as a measure of correctness of the 
boundary conditions imposed on subdomains.
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4.2. Extending triangles and vertices

Before modeling individual parts of the algorithm, we first extend triangles and vertices to include relevant aspects of 
the problem domain:

sig Element extends Triangle {
wet: Bool one → State,
slowFlow: Bool,
lowNode: Node

}

sig Node extends Vertex {
W, Wt: Bool one → State,
H: Height

}
sig State {}

Subtype signatures in Alloy introduce no new types but instead represent sets of elements that are subsets of their parents. 
Through fields, they may also introduce additional relations. Here, the new signatures introduce a set Node as a subset of 
Vertex, a set Element as a subset of Triangle, and a new type and set State. Additional aspects of the declarations warrant 
comment, including notation, how state changes are accommodated, and how physical quantities determined by other parts 
of ADCIRC are incorporated.

With respect to notation, we define discrete wet–dry states that mirror those in the wet–dry algorithm, so elements 
have a wet field, and nodes have W and Wt fields for wet and temporarily wet, respectively. To accommodate local state 
changes within a mesh, a State atom is added in the last position of those relations. So when node n is dry in state 4 and 
then becomes wet in state 5, the relation W contains the following tuples: (n, False, State4) and (n, True, State5). As a result 
of the approach, a simple join expression n.W .s denotes the value of the relation W for node n at a given state in the 
algorithm. We could have just as well swapped the order of Bool and State in the fields so that State appears in the middle 
of the relation, but doing so would be less notationally convenient. Use of the multiplicity keyword one indicates that we 
require n.W.s to denote a single Boolean state, as we also require of the Wt and wet fields.

Adding the State signature in the declarations of wet, W, and Wt fields, as we have done, allows them to “vary” in the 
sense that they become a function of State, an idiom commonly employed in Alloy to make a relation dynamic [25]. Note 
by way of contrast that the State signature does not appear in the declaration of the H, slowFlow, and lowNode fields, since 
those represent physical quantities that are static for the duration of a time step in the wet–dry algorithm, as we describe 
below. Note also that the fields in Mesh and Triangle that we saw earlier are static in this sense: they do not have a changing 
state, since mesh topology is also static.

In addition to discrete wet–dry states, physical attributes are incorporated by modeling the tests performed on them us-
ing predicate abstraction [19], resulting in a slight over-approximation of the original algorithm, as we discuss in Section 6.1.

For a node n, a water column height n.H represents the vertical distance at that location from the water surface to the 
ocean floor, as used in parts 1 and 3 of the algorithm. It may be low (Hn < Hmin), medium (Hmin ≤ Hn < 1.2Hmin), or high 
(Hn ≥ 1.2Hmin), where Hmin is a user-defined constant:

abstract sig Height {}

one sig Low, Med, High extends Height {}

An abstract signature like Height has no elements other than the ones defined by its extensions, and one sig declares 
signatures Low, Med, and High to be sets containing exactly one element.

For an element e, a flow of water e.slowFlow is true when V ss(e) ≤ Vmin , as used in part 2 of the algorithm. V ss is the 
steady-state velocity resulting from differences in water surface elevations of an element’s incident nodes. It is a function of 
those elevations, the distance between nodes, and their bottom friction; nodal velocities are not used. Vmin is a user-defined 
constant. The value e.lowNode is the element’s node with the lowest water surface elevation—or one of the lowest in the 
case it is not unique—supporting the test in part 3 of the algorithm. It must of course be a node incident to the element, so 
we have:

fact { all e: Element | e.lowNode in dom[e.edges] }

The entire collection of signature declarations, to this point, can be represented graphically as a model diagram, as shown 
in Fig. 12, which the Alloy analyzer itself is able to generate from a textual description. In the figure, boxes represent sets of 
atoms, and two different types of arrowhead are used to distinguish between relations (thin, filled arrowheads) and subtype 
relationships (fat, unfilled arrowheads).

Finally, because the wet–dry algorithm iterates over collections of nodes and elements, we make use of the following 
functions for convenience and clarity:

fun nodes [m: Mesh]: set Node { dom[m.triangles.edges] }
fun elements [m: Mesh]: set Element { m.triangles }
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Fig. 12. Model diagram: a graphical representation of the model’s declarations.

4.3. The algorithm as transition relations

Equipped with the above, we now turn to individual parts of Algorithm 1, where each is modeled by a transition relation: 
a predicate defining the change in state it produces. We begin by allowing the algorithm to start from arbitrary n.W states, 
as though they had been produced in a prior time step, and then observe their values at the end.

Initialization of the algorithm appears below, where elements are defined to be wet, as prescribed by the algorithm, and 
nodes are allowed to be either wet or dry, so long as their wet and temporarily wet states match (again, as they would at 
the end of a prior time step):

pred init [m: Mesh, s: State] {
all e: m.elements | e.wet.s = True
all n: m.nodes | n.W.s = n.Wt.s

}

We note here, as a matter of syntax, that a block defined by braces ({}) in Alloy may enclose a sequence of constraints; its 
meaning is equivalent to the conjunction of those constraints.

Now, taking each of the parts in turn, nodal drying is performed in part 1, causing nodes with low water column height 
to be made dry:

pred part1 [m: Mesh, s, s’: State] {
noElementChange[m, s, s’]
all n: m.nodes |

n.W.s = True and n.H = Low
implies n.W.s’ = False and n.Wt.s’ = False
else n.W.s’ = n.W.s and n.Wt.s’ = n.Wt.s

}

where the conditional statement in part 1 of the algorithm is modeled with logical implication, the test on water column 
height appears as n.H = Low, and the predicate noElementChange[m, s, s’] specifies the frame condition, since an element’s 
wet–dry state is left unchanged in this part:
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pred noElementChange [m: Mesh, s, s’: State] {
all e: m.elements | e.wet.s = e.wet.s’

}

In part 2, elements with a single dry node cause that node to become wet if the steady-state velocity across the element 
is sufficient. Though an imperative implementation of this would loop over elements, as in Algorithm 1, a more declarative 
description requires instead that we begin with nodes and identify those that are incident to such elements:

pred part2 [m: Mesh, s, s’: State] {
noElementChange[m, s, s’]
all n: Node {

n.W.s’ = n.W.s
n.Wt.s’ = (make_wet[m, n, s] implies True else n.Wt.s)

}
}

where make_wet[m, n, s] defines the conditions that cause a node to become wet, namely:

pred make_wet [m: Mesh, n: Node, s: State] {
some e: m.elements | e.slowFlow = False and loneDryNode[n, e, s]

}

pred loneDryNode [n: Node, e: Element, s: State] {
n in dom[e.edges] and n.W.s = False and wetNodes[e, s] = 2

}

fun wetNodes [e: Element, s: State]: Int {
#(dom[e.edges] <: W).s.True

}

For a node n to become wet, it must be incident to an element whose steady-state water velocity is sufficient, as determined 
by term e.slowFlow, and with a single node that is dry, as determined by the loneDryNode predicate. Function wetNodes
counts the nodes of the element in which W is true in the given state; in its definition, the form s <: r is domain restriction 
of r to s, which in this case is the relation W restricted to the nodes incident on e.

In part 3, the algorithm allows water to build up in “barely wet” elements to prevent the uninterrupted flow of a thin 
film of water, as noted in Section 2.1:

pred part3 [m: Mesh, s, s’: State] {
noNodeChange[m, s, s’]
all e: m.elements |

let ij = dom[e.edges] − e.lowNode | - - nodes with highest water surface elevations
e.wet.s’ = (some ij.H − High implies False else e.wet.s)

}

where a let expression introduces the variable ij, which is bound to the two incident nodes i and j with the highest water 
surface elevations, where the expression ij.H − High is non-empty if either i or j has a water column height of Low or Med, 
and where the predicate noNodeChange[m, s, s’] specifies the frame condition:

pred noNodeChange [m: Mesh, s, s’: State] {
all n: m.nodes | n.W.s = n.W.s’ and n.Wt.s = n.Wt.s’

}

In part 4, nodes that are landlocked, i.e., surrounded by inactive elements, are made temporarily dry:

pred part4 [m: Mesh, s, s’: State] {
noElementChange[m, s, s’]
all n: m.nodes {

n.W.s’ = n.W.s
n.Wt.s’ = (make_dry[m, n, s] implies False else n.Wt.s)

}
}

where make_dry[m, n, s] defines the conditions that cause a node to become dry, namely:
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pred make_dry [m: Mesh, n: Node, s: State] {
n.Wt.s = True and landlocked[m, n, s]

}

pred landlocked [m, Mesh, n: Node, s: State] {
no { e: m.elements | n in dom[e.edges] and active[e, s] }

}

pred active [e: Element, s: State] {
e.wet.s = True and all n: dom[e.edges] | n.Wt.s = True

}

where an element is active if and only if it is wet and all three of its nodes are temporarily wet.
In part 5, the final wet–dry states for nodes are assigned from their temporary values:

pred part5 [m: Mesh, s, s’: State] {
noElementChange[m, s, s’]
all n: m.nodes | n.W.s’ = n.Wt.s and n.Wt.s’ = n.Wt.s

}

The complete wet–dry algorithm can now be expressed as follows, with parts being combined together using sequential 
composition:

pred solve [m: Mesh, s: Int → State] {
init[m, s[0]]
part1[m, s[0], s[1]]
part2[m, s[1], s[2]]
part3[m, s[2], s[3]]
part4[m, s[3], s[4]]
part5[m, s[4], s[5]]

}

where five transitions are performed over six states (0..5) that are collected together in a mapping s from integer indices to 
states.

Looking ahead to the simulations performed below, when visualizing instances in Alloy, it is helpful to have state atoms 
appear in lexical order, which we can ensure by importing Alloy’s built-in ordering module:

open util/ordering [State] as so

where the open statement includes both the path and the name of the module, and because it is parameterized, an instan-
tiation type. An optional alias so is used to distinguish between different instantiations, if and as needed. Here, the ordering
module imposes a total ordering of the atoms of State, whose names are interchangeable, so there is no loss of generality. 
The module provides functions that can be accessed via the alias we chose, e.g., so/first, so/next, and so/last, for working with 
ordered states.

4.4. Some simple simulations

Our approach to verification involves a comparison between full and subdomain runs, as opposed to showing that the 
wet–dry algorithm, in isolation, satisfies a specification. Before setting up the comparison, we can perform some simple 
simulations of the algorithm to gain confidence that it behaves as expected.

For instance, to see how a finite element mesh can start out with all wet nodes that then become dry in a single time 
step—i.e., in one execution of the wet–dry algorithm—we define the following predicate and look for satisfying instances:

pred allWetToDry {
let s = toSeq[so/first, so/next] |

some m: Mesh |
solve[m, s] and all n: m.nodes | n.W.(s[0]) = True and n.W.(s[5]) = False

}

where toSeq is a helper function that takes an ordering of states, as described above, and produces a mapping from indices 
to states. The initial and final states are denoted by s[0] and s[5], respectively, though we could have just as well used 
so/first and so/last.

An arbitrarily large number of instances of arbitrary size are produced by Alloy, showing that all nodes can indeed start 
out wet and become dry if, for instance, they all happen to have low water column heights (all n: m.nodes | n.H = Low), 
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which will cause them to become dry in part 1. Further wetting in part 2 is then impossible, since it would require the 
propagation of wetting from some other (wet) nodes. In actual simulations with ADCIRC, such an outcome is unlikely since 
it would be prevented by mass conservation requirements external to the wet–dry algorithm.

Alternatively, by defining an analogous predicate allDryToWet, we can ask whether a mesh can start out with all dry 
nodes that then become all wet. No such instances are produced, as expected, since a dry node can only become wet 
through the propagation of wetting from elsewhere, which is accomplished in part 2 of the algorithm.

5. Full and subdomain runs

To accommodate both full and subdomain runs simultaneously, we begin by describing the structural relationships be-
tween them, and then show how to set up comparisons so that outcomes can be used to determine whether proposed 
boundary conditions on subdomains are effective. Several different approaches for boundary conditions are described as 
part of the iterative process introduced in Section 1.1 and illustrated in Fig. 3. We also present an alternative modeling 
approach and highlight some of its own characteristics.

In terms of representation, the structure is simple enough: a subdomain covers part of a full domain, as we saw in Fig. 2, 
where domain � is partitioned at interface � into a region of interest, �I , and a region external to it, �E . We extend Mesh
with the singletons Full and Sub to represent � and �I , respectively, and then require that the subdomain’s elements be 
drawn from those of the full domain:

one sig Full, Sub extends Mesh {}

fact { all e: Sub.elements | e in Full.elements }

where, as with any other mesh, the elements in Sub are required to be contiguous. With respect to coverage, the subdomain 
may have either no, some, or all borders in common with the full domain. In the latter case, for instance, the subdomain 
and full domain are equivalent, and we expect the states produced by the wet–dry algorithm to be equivalent even without 
imposing boundary conditions on interface �.

By sharing structure in this manner, the domains have common properties, such as the physical attributes slowFlow and 
H , which correspond to steady-state velocity and water column height, respectively. These denote computations in both full 
domains and subdomains that are external to the wet–dry algorithm, and that are taken to be correct and consistent based 
on the results of previous work [7].

While full and subdomain runs share structure, their individual computations should be independent and based on 
their own wet–dry states. To distinguish between them, we extend State so that a unique trace is generated for each type 
of run:

sig F, S extends State {}

where F and S correspond to full and subdomain runs, respectively.
If runs are compared at this point, absent any special handling of nodes along interface �, the results produced by a 

subdomain run diverge from those produced by a full run. The assertion SameFinalStates sets up this case by initializing 
runs so that they begin in the same wet–dry states (at f [0] and s[0]), and by then checking their final states (at f [5] and 
s[5]) for equivalence:

assert SameFinalStates {
let f = toSeq[fo/first, fo/next], s = toSeq[so/first, so/next] |

{ all n: Sub.nodes | n.W.(f[0]) = n.W.(s[0]) - - start from the same wet–dry states
solve[Full, f]
solve[Sub, s]

} implies all n: Sub.nodes | n.W.(f[5]) = n.W.(s[5])
}

where, as before, the aliases fo and so refer to a total ordering of the atoms that define full domain and subdomain states, 
respectively, and where f and s refer to the corresponding sequences.

As expected, the assertion produces counterexamples, and does so with as few as a single element in �E , the region 
outside of subdomain �I , and with one or more elements within the subdomain. Each counterexample produced falls into 
at least one of two broad categories: one where wetting would have entered the subdomain from �E but does not, and 
another where drying occurs that would have been prevented by an active element in �E . In the subdomain run, since 
region �E is not part of the simulation, these behaviors are absent. Obviously, such behaviors can and do occur in many 
different ways and combinations.

5.1. Imposing boundary conditions

For actual simulations in ADCIRC, we can store wet–dry states on interface � during a full run and then impose them on 
subsequent subdomain runs. Doing so makes low-cost simulations possible, since all computations external to a geographic 
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region of interest can then be avoided. In practice, that cost is only a fraction of a percent of the time required for full 
runs [7].

The value of state-based modeling in Alloy is in gaining confidence that the boundary conditions are right, since it 
facilitates experimentation with (a) the amount of state along � needed from a full run, and (b) the manner in which that 
state is enforced in subdomain runs, as we show.

In defining boundary conditions, we have several choices that could involve either nodes or elements, or both, along 
with their intermediate and final wet–dry states. We start by identifying nodes on interface � with the following predicate:

pred gamma [m: Mesh, n: Node] {
m = Sub and borderVertex[m, n] and some incidentElts[Full, n] − incidentElts[Sub, n]

}

fun incidentElts[m: Mesh, n: Node]: set Element {
{ e: m.elements | n in dom[e.edges] }

}

where gamma is true of a node if it appears on the border of a subdomain and if, in the full domain, it is incident to 
an element in �E , and where the definition of borderVertex is given in Section 3.3. The function incidentElts denotes the 
elements incident to node n in mesh m.

For instance, if the mesh in Fig. 9 represents a full domain �, and the elements t0 and t1 represent a subdomain �I , 
then nodes v2 and v3 in the subdomain satisfy gamma, since they are on the subdomain border and, in the full domain, 
are incident to t2, an element in �E .

Making use of gamma, we can now consider ways of handling the nodes on � to produce an effective boundary condi-
tion. To begin thinking about how that might work, we could imagine something simple: setting the final wet–dry states 
of interface nodes in a subdomain run with the final wet–dry states from their full domain counterparts, but this only 
pushes our problem back a level: intermediate wet–dry states of nodes on � during execution of the wet–dry algorithm are 
unaccounted for, and these intermediate states are needed to determine the final states of nodes just inside �. In this case, 
SameFinalStates produces counterexamples, as expected, with the smallest having just two elements in � and one in �I .

An alternative might be to initialize the wet–dry states of subdomain nodes on � with final wet–dry states from the full 
domain. In other words, the initialization step of SameFinalStates might instead be defined as follows:

all n: Sub.nodes | n.W.(s[0]) = (gamma[Sub, n] implies n.W.(f[5]) else n.W.(f[0]))

where the initial wet–dry states of subdomain nodes on �, n.W .(s[0]), are set to the final states of their full domain 
counterparts, n.W .( f [5]). This approach also fails, again producing a counterexample with just two elements in �.

As one might suspect, additional care must be taken to account for intermediate wet–dry states. In each part of the 
wet–dry algorithm, then, we might make use of those intermediate states from a full run. Looking at just part 2 of the 
wet–dry algorithm, for instance, the following predicate treats nodes on gamma in a subdomain run specially:

pred part2 [m: Mesh, s, s’: State] {
noElementChange[m, s, s’]
all n: m.nodes {

n.W.s’ = n.W.s
n.Wt.s’ = (gamma[m, n] implies 〈state from full run〉 - - impose boundary condition

else (make_wet[m, n, s] implies True else n.Wt.s))
}

}

where the expression in angle brackets (〈〉) is to be replaced by a term representing a wet–dry state from a full run, 
such as n.Wt.( f [2]), the temporary wet–dry value in state 2 from the full run, which could be passed into part 2 from 
SameFinalStates and solve. Each individual part of the algorithm, then, could make use of its own intermediate state from 
the full run, e.g., f [0], f [1], f [2], . . ., as needed.

This more conservative approach, where we pull out every intermediate wet–dry state along � from a full run, indeed 
results in a correct implementation, and does so without the need of any element state. Through a process of experimenta-
tion, however, we find we can get by with fewer states from a full run.

Previously we noted that failure to enforce boundary conditions leads to counterexamples that fall into two broad cate-
gories. In the full run, these behaviors correspond to computations performed in part 2 (propagate wetting across an element) 
and part 4 (make landlocked nodes dry) of the wet–dry algorithm, and it is in just these parts that boundary conditions must 
be applied. When the predicates for parts 2 and 4 are modified as above, we are able to show that using just the final
wet–dry states from a full run (i.e., n.W .fo/last) in those parts is sufficient to satisfy the SameFinalStates assertion. So, while 
we could store and make use of every intermediate wet–dry state of every boundary node, doing so is unnecessary.

Thus, for actual simulations in ADCIRC, we can record a minimal amount of data from a full run—the final wet–dry states 
of nodes on �—and during a subdomain run, force those states in parts 2 and 4 of the wet–dry algorithm. This is in fact 
how subdomain modeling is implemented in ADCIRC beginning with v51.42 [29].
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Fig. 13. Mesh for full run. Fig. 14. Mesh for subdomain run.

To perform the analysis above, Alloy offers a variety of solvers, including MiniSat [35], an incremental SAT solver from 
Chalmers University of Technology, Sweden, and Lingeling [9] from Johannes Kepler University, Austria. Checking the Same-
FinalStates assertion on the same 2.8-GHz-Intel-Core-i7 laptop computer with the above changes, for as many as 4 elements 
and 6 nodes requires a little over 3 minutes with MiniSat, but just 30 seconds with Lingeling. If we add as a fact the NoCut-
Points assertion previously checked in Section 3.3, that time further drops to about 18 seconds. For as many as 5 elements 
and 7 nodes, Lingeling requires about 13 minutes. In all cases, Alloy finds no counterexamples to the assertion.

Though such an analysis is bounded, the rationale for undertaking it springs from an appeal to the small scope hypothesis:
if an assertion is invalid, it probably has a small counterexample [26], as we have seen in preceding examples. That those 
encountered have been small is also consistent with a property required for the solution of hyperbolic PDEs, the so-called 
Courant–Friedrichs–Lewy (CFL) condition [28], which suggests a limited range of data dependencies in a single time step.

5.2. An alternative approach for full and subdomain runs

To accommodate full and subdomain runs, other approaches can be taken, and we sketch one such alternative here that 
employs a different strategy. By once again making use of predicate abstraction, we can have a single mesh instance do 
double duty and serve the needs of both.

To do so, we consider a mesh that represents just region �I , and give it a different interpretation in each case. For 
a full run, nondeterminism is added along � to model arbitrary behavior external to it, as depicted in Fig. 13 (via the 
narrow white band extending beyond � into �E ). For a subdomain run, we use that same region as is, without the added 
nondeterminism, as shown in Fig. 14 (in white).

As a first step, we define Interface nodes that may appear only on the border of a mesh:

sig Interface extends Node {
allowsWetting, preventsDrying: Bool

}

fact { all m: Mesh, i: Interface | borderVertex[m, i] }

where n.allowsWetting is true when a node n on � in a full run is incident to an imaginary element e in �E that has exactly 
two wet nodes and V ss(e) > Vmin , and n.preventsDrying is likewise true when such an element is active.

The conditions defined by the two fields can then be used to affect how nodes become wet or dry to account for 
interactions with �E in a full run. The predicate make_wet, for instance, would then be modified as follows:

pred make_wet [m: Mesh, n: Node, s: State] {
(some e: m.elements | e.slowFlow = False and loneDryNode[n, e, s])
or (s in F and n in Interface and n.allowsWetting = True) - - allow wetting in a full run

}

so that an imaginary element in region �E can possibly allow a node to become wet, where F is an extension of State
for full runs, as before. With a similar change in make_dry, an imaginary element in region �E can prevent a node from 
becoming dry. Intuitively, the updated predicates make clear that subdomains require state from a prior full run on � if 
they are to produce final wet states that are equivalent to their full domain counterparts.

If we enforce boundary conditions as before in parts 2 and 4 of the wet–dry algorithm, we are again able to show that 
the SameFinalStates assertion is satisfied, and is so for larger mesh instances, in this case for as many as 8 elements and 10 
nodes in about 3 minutes.
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6. Role in understanding empirical algorithms

Based on empirical rules, the wet–dry algorithm has behaviors that may not be obvious from inspection alone. In-
deed, the algorithm emerged piecemeal over time from the experience and analysis of users and developers, not from a 
specification. While some behaviors may appear in the course of using ADCIRC, understanding the implications of empirical 
algorithms may be better achieved through complementary means. By specifying properties of interest in Alloy, for instance, 
we are able to probe those behaviors. Here we give an example.

Our look at model checking began with a question developers raised but were unable to answer without resorting to 
experiments: why would an element with three wet nodes be dry?

ADCIRC allows users to define virtual “recording stations,” whose geographic locations lie somewhere in a finite element 
mesh and whose physical values, such as water surface elevation, are determined by interpolating within an element from 
nodal quantities. When the associated element is dry, ADCIRC produces no output—by design—for the station even if its 
nodes are wet. Users noticed the apparent discrepancy between the wet–dry states of elements and nodes, and wondered 
how an element with three wet nodes could be dry.

6.1. Nature of the approximation

To answer the question using Alloy, we first take a step back and consider the nature of the approximation being made. 
Our model of the wet–dry algorithm can be characterized as an over-approximation since it represents more instances 
than are actually present. Because checking the subdomain modeling extension involves a safety property, however, its 
conclusions are meaningful: if a property is true in the model it is also true in the concrete system. If, on the other 
hand, we are seeking an instance that satisfies a property of interest, such as a witness to the question above, then an 
over-approximation may lead to spurious results.

In our model, we rely on predicate abstraction, and while doing so we largely avoid over-approximation. For instance, 
part 2 of the algorithm uses the term e.slowFlow, which is defined to be true when V ss(e) ≤ Vmin for an element e. This ab-
straction is exact in the sense that the actual steady-state velocity, V ss , can take on arbitrary values that are both physically 
realizable and independent of other tests in the algorithm. The same argument can be made for the water column height, 
Hn , as it appears in parts 1 and 3 of the algorithm.

On the other hand, the term e.lowNode in part 3 is the element’s node with the lowest water surface elevation, and at 
present, an inconsistency can arise between adjacent elements in the way the nodes are selected. To prohibit physically 
impossible instances from being generated, we insist on a total ordering for nodes, as though by water surface elevation, 
and use that in selecting the lowest node in each element.

We begin by adding a field lte to mesh extension M and then require that it be a total order over the set M.nodes:

one sig M extends Mesh { lte: Node → Node }
fact { totalOrder[M.lte, M.nodes] }

Then, an element’s lowNode is defined to be the minimum of its incident nodes, ensuring that any witness generated is one 
that is physically meaningful:

fact { all e: M.elements | e.lowNode = min[M.lte, dom[e.edges]] }
fun min [r: univ → univ, s: set univ ]: univ {

{ y: s | (no x: s | x → y in r − iden) }
}

where, using total order r, the function min returns the unique minimum over a (non-empty) set s, and where iden is the 
identity relation.

We remark that, while the water surface elevations of two or more nodes in ADCIRC could in fact be equivalent, the 
formulation above suffers no loss of generality. What it prevents is the following: a pair of adjacent elements e1 and e2
with edges (e1, u, v) and (e2, v, u), where e1.lowNode = u and e2.lowNode = v . In other words, ADCIRC must select a node 
even in the case of a tie, and we continue to leave that choice undetermined2 so long as adjacent elements avoid disagreeing 
about which of their common nodes has the lowest water surface elevation.

6.2. Generating witnesses

We now perform a simulation and look for an instance satisfying the property of interest, a dry element with three wet 
nodes:

2 Since arbitrary total orders are allowed.
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Fig. 15. Dry element e2 with wet nodes n1, n2, and n3, where the state change in e2 is boxed.

pred dryElementWetNodes {
let s = toSeq[so/first, so/next] | solve[M, s]
some e: M.elements | e.wet.so/last = False and wetNodes[e, so/last] = 3

}

where e.wet.so/last denotes the final wet state of element e, and where the definition of wetNodes is given in Section 4.3. We 
start by specifying a small scope in the Alloy analyzer and gradually increase it until an instance is found with 3 elements 
and 4 nodes, the smallest such instance in terms of elements and nodes. By making use of the incremental solving capability 
of MiniSat, we can generate and step through instances within that scope, one at a time.

Generally speaking, because of the sheer number of satisfying combinations of states and possible traces, there exist 
many such ways of producing a dry element with three wet nodes, even within this limited scope. For a simpler instance, 
we can ask for one with the fewest number of wet–dry state changes by initializing nodes to be wet. One such example is 
shown in Fig. 15, which is annotated with the states of both nodes and elements, and where a single state change is boxed, 
in this case for element e2, showing that it dries in state s3. For brevity, where s appears in fields that vary with state (W , 
W t , and wet), it denotes the set of all states, i.e., s = {(s0), (s1), (s2), (s3), (s4), (s5)}.

Recall in the wet–dry algorithm that elements always start out wet but become dry if either of their nodes with the 
highest water surface elevations has a water column height less than 1.2Hmin , a user-defined constant, or is not High, as it 
appears in our Alloy model. Then, since e2.lowNode = n3, that leaves n1 and n2 as the nodes with the highest water surface 
elevations, and n1.H is Med, not High, so it is clear why element e2 dries: it is just part 3 of the wet–dry algorithm restated. 
Perhaps, then, a more appropriate framing of the question would be to ask what prevents wet nodes on a dry element from 
drying, since we already know why nodes might become wet and why elements might become dry.

Continuing with the instance shown in Fig. 15, after element e2 dries in part 3, the wet–dry algorithm checks for nodes 
that are landlocked in part 4, making dry any that are found. Recall that a node is landlocked if and only if it is incident 
only to inactive elements, and an element is active if and only if it is wet and has three temporarily wet nodes. So the 
linchpins in the instance shown are really nodes n0 and n2: their water column heights H are High, which simultaneously 
prevents elements e0 and e1 from drying and thereby taking down every incident node with them by making them dry, 
since they would be landlocked: there would be no active elements to keep nodes from drying. What is clear is that nearby 
nodes with high water column heights will be found whenever a dry element has three wet nodes.

For studies exploring the physical basis of the wet–dry algorithm’s empirical rules, we imagine that the ability to answer 
what-if questions in this manner could be helpful, since they can be readily posed, and because witnesses can often be 
found instantaneously, as they are above. Instead of relying solely on a finite element solver, then, and hoping for a satisfying 
instance or counterexample by chance, we can determine whether such a situation is possible, within bounds, and provide 
a small witness that confirms it.



J. Baugh, A. Altuntas / Science of Computer Programming 158 (2018) 100–121 119
6.3. Ongoing debate

Using ADCIRC, another developer answered the question by instrumenting the code and performing a simulation to see 
if such an instance could be found. By simulating tidal hydrodynamics around Shinnecock Inlet on Long Island, New York, 
with a mesh of 5 780 elements and 3 070 nodes—and about 5 CPU-hours of run time—he also concluded that “an element 
can be dry when all three nodes around the element are wet.” The exercise led to other questions about whether flow is 
“shut down” in places where this occurs, and whether such situations might degrade numerical stability while offering little 
improvement in wet–dry accuracy.

What this points to is an ongoing debate about the current scheme, which was put into place in order to reduce mass 
balance errors due to flow down steep slopes. It has been noted that, while improving the physics in some cases, it can 
also artificially elevate water levels in marshes and tidal creeks during tidal simulations, so a resolution does not appear 
to be immediately forthcoming. But opinions are varied, and when another developer learned about our model checking 
approach, he asked whether we agreed with his conclusion that “if all three nodes are wet, an element should be wet.”

While not taking a position on the issue, we believe that, in light of what are likely to be ongoing challenges, a decision 
support system based on model checking could be helpful in exploring possible realizations of wet–dry algorithms. To sim-
plify their expression, a domain-specific description language could be designed, perhaps drawing on an existing, imperative 
extension to Alloy [32]. Instances and counterexamples might then be depicted in a more intuitive way for ocean modelers, 
as in Fig. 15, using the VLM tool for domain-specific visualizations [17], Alloy’s API in Java, or αRby [31], an embedding of 
Alloy in Ruby.

7. Related work

While control systems, communication protocols, and hardware design are historically among the most common appli-
cations of formal methods [11,40], several studies do address problems related to scientific computing.

Siegel et al. [34] present a framework that tests small numerical programs for real equivalence, meaning that one program 
can be transformed into the other using the identities of real numbers. The approach is based on creating a sequential 
program that serves as a specification, and then using it as the measure against which an implementation is compared, such 
as a more complex MPI-based parallel program. Equivalence checking is performed by building up symbolic expressions in 
both programs and comparing them using the SPIN model checker. Instead of working with models of programs, then, the 
idea is to work directly with programs themselves.

Arnold et al. [3] address the complexity of reasoning about imperative implementations of sparse matrix formats, an 
essential element of large-scale problems in scientific computing. The authors define an APL-like functional programming 
language that allows a more natural expression of operations on such formats. An associated verification approach translates 
programs written in the language into Isabelle/HOL using a framework that is able to automate the proofs in many cases.

Chadha et al. [10] describe a methodology for developing concurrent systems that extends the Larch family of speci-
fication languages with the CCS process algebra. While not designed especially for numerical algorithms, the approach is 
applied to the specification of a parallel preconditioned conjugate gradient solver for linear systems of equations, the type 
of solver often used in finite element analysis systems like ADCIRC.

In other studies, Bientinesi et al. [8] use Floyd–Hoare logic to derive and prove the correctness of dense linear algebra 
algorithms. Baugh [5] formalizes portions of a finite element analysis library using algebraic specifications in the style of 
the Larch Shared Language.

8. Conclusion and future work

As far as we are aware, our study is the first to look at formal methods like Alloy in the context of scientific computing 
and large-scale physical simulation. By supporting experimentation with implementation choices and providing feedback, 
the approach helps increase our confidence that the boundary conditions in our subdomain modeling extension are imple-
mented correctly.

We have already noted the model-finding capabilities of Alloy that support the generation of arbitrary mesh topologies. 
Among its other attractive features is support for the incremental construction and analysis of models, which we employed 
both in development and in our presentation; such an approach is facilitated by a combination of a declarative style of 
specification and its rich data modeling features, including subtyping. It is our perception that these aspects of Alloy enabled 
us to create and discover good abstractions and invariants more easily than would have been possible using a programming 
language, and that such products are precisely what are needed by a correspondingly good implementation. And it is this 
experience that leads us to conclude that Alloy might serve as a good “everyday” tool for those working in traditional areas 
of science and engineering, particularly since it supports the analysis of sometimes trickier issues if and when they arise.

Whether and how specification and verification approaches might eventually be applied more broadly to the devel-
opment of scientific software are open questions. Some of the techniques that automatically extract models from code—
SLAM [4], Java Pathfinder [39], and Siegel’s related approach with its emphasis on floating-point expressions [34]—may 
make model checking more accessible to a wider community. One can easily imagine scenarios for functional verification 
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requiring symbolic, real-valued expressions, in the style of Siegel, or matrix operations, though we wonder if using conven-
tional programming languages is the ideal means for doing so.

Our approach, by way of contrast, involves us in the development of models of software, which may offer some advan-
tages: scientists and engineers are accustomed to working with models anyway, and with automatic, push-button analysis 
as an alternative to theorem proving, one can focus on modeling and design aspects. As Jackson writes [26], code is a 
poor medium for exploring abstractions. It is not clear to us in any case how one would go about tackling the analysis we 
perform here using, say, Fortran code, or whether any insights can be gained by doing so.

If tools like Alloy are to find practical application in scientific and engineering domains, one might hope for additional 
support for numerical expressions, thereby expanding the scope of analyses that can be performed. A modest step might 
be incorporating an SMT solver like Yices in Alloy [15], or perhaps dReal [18], which is capable of handling first-order logic 
formulas over the reals. But more than any extension to Alloy, what would have benefited our study most is a tool capable 
of automatically producing planar embeddings of meshes from Alloy instances, which proved to be tedious to do by hand.

Despite our positive experiences working in the given domain of application, we must acknowledge that scientific 
software is often developed from a different perspective, where global, non-reentrant data structures are common and 
short-term concerns about performance dominate. Indeed, to realize a new, adaptive approach to subdomain modeling—not 
described here—we found ourselves reimplementing ADCIRC almost entirely in a prototype developed with abstraction in 
mind [2]. Our future directions are focused on that and similar efforts that incorporate adaptivity both for re-analysis and 
mesh refinement. We expect to make use of Alloy’s support for experimenting with abstractions, building object models, 
and finding representation invariants [24].
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