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Abstract—Large-scale numerical software requires substantial
computer resources that complicate testing and debugging. A
single run of a climate model may require many millions of
core-hours and terabytes of disk space, making trial-and-error
experiments burdensome and time consuming. In this study,
we apply hybrid theorem proving from the field of cyber-
physical systems to problems in scientific computation, and show
how to verify the correctness of discrete updates that appear
in the simulation of continuous physical systems. By viewing
numerical software as a hybrid system that combines discrete and
continuous behavior, test coverage and confidence in findings can
be increased. We describe abstraction approaches for modeling
numerical software and demonstrate the applicability of the
approach in a case study that reproduces undesirable behavior
encountered in a parameterization scheme, called the K-profile
parameterization, widely used in ocean components of large-
scale climate models. We then identify and model a fix in
the configuration of the scheme, and verify that the undesired
behavior is eliminated for all possible execution sequences. We
conclude that hybrid theorem proving is an effective and efficient
approach that can be used to verify and reason about properties
of large-scale numerical software.

Index Terms—hybrid systems, formal methods, scientific com-
putation, KeYmaera X

I. INTRODUCTION

The accuracy of physical models depends both on the con-
vergence of numerical methods that approximate continuous
physics and on their realization in software, which can be com-
plicated by the discrete computations and state changes that
arise from various ad-hoc and empirical modeling considera-
tions. Well-established stability and convergence criteria exist
for analyzing finite difference and other numerical schemes,
but such approaches offer little guidance when it comes to
reasoning about discrete updates to physical parameters, for
instance, that may be performed at intermediate points in
the computation. As a result, findings can be difficult to
validate, and in the absence of test oracles, developers may
have to settle for spot checks and plausibility tests based on
conservation laws and other principles that are expected to
hold [1]. In this study, we draw on the similarities between
numerical models of physical processes and cyber-physical
systems, which combine discrete and continuous dynamics.
By viewing numerical software as a hybrid system [2], we are
able to verify some safety properties of interest using tools
originally developed for that class of applications.
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A cyber-physical system consists of a discrete controller
with sensors and actuators that interact with the physical
environment. Examples include self-driving cars, air traffic
control systems, and industrial robots used in manufacturing
applications. Commonly modeled as hybrid systems, they are
assumed to have discrete behavior that is instantaneous and
intermittent, and continuous behavior that models physical
processes, which evolve until the controller intervenes and
changes their course instantaneously. Because they are often
safety critical, in that human lives and physical well-being
depend on them, considerable efforts have been taken to
develop tools and approaches to verify their correctness [2].
In this study, we make use of one such tool, KeYmaera X [3],
a hybrid theorem prover.

Numerical models may also be viewed as evolving con-
tinuously with discrete updates that occur instantaneously and
intermittently. An example of such composition may be seen in
coastal ocean models, which simulate both the time evolution
of water surface elevations and discrete changes in wet-dry
states at each grid point, as flood waters advance and recede
over land. While water surface elevations can be viewed
as evolving continuously, a location on the earth becoming
wet or dry is often modeled in software as an instantaneous
event, both depending on and affecting the future course
of continuously evolving processes. Although the differential
equations describing such continuous processes are typically
discretized in time and space in a numerical model, they may
still be taken to be continuous in a hybrid model, allowing
an abstraction from one set of details to achieve better focus
on another: the discrete updates taking place at intermediate
points in the time evolution of a system.

In hybrid system models [3], discrete and continuous be-
havior can be captured in hybrid programs, which resemble
conventional computer programs but may also include the
definition of ordinary differential equations (ODEs) with time
derivatives. Because we are concerned with the numerical
solution of partial differential equations (PDEs) that are dis-
cretized in both time and space, we present an abstraction
approach that accommodates the use of hybrid models by
maintaining the discretization in space but abandoning the
discretization in time. Doing so reduces a system of PDEs to
a system of ODEs, resulting in a model that evolves continu-
ously in time, with intermittent updates, over a discrete space.



Since such systems of PDEs have a finite range of influence,
as required by the Courant-Friedrichs-Lewy (CFL) condition,
the numerical methods employed will be known to have a
domain of dependence encompassing the analytical domain of
dependence of the PDE. Thus, spatial data dependencies are
such that we can work with small, discrete grids and make
use of nondeterminism to represent arbitrary states external to
them.

Such an approach, for example, may be applied to a
numerical model that simulates the one dimensional diffusion
of a variable \:
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where « is the diffusivity and = and ¢ are the space and time
variables, respectively. The representation of this PDE in a
hybrid verification model may take the following form:
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where Az is the distance between evenly spaced discrete grid
nodes at ¢ — 1, 4, and ¢ + 1. While the spatial discretization is
based on a second-order central difference scheme, the time
evolution of \; in this hybrid model remains continuous, in a
manner analogous to the method of lines [4], which discretizes
all but a single dimension that is left continuous.

A higher level of abstraction may be employed in some
cases to reduce the size and therefore improve the tractabil-
ity of a hybrid model. Instead of including all continuous
processes, i.e., the PDEs solved by an actual numerical
model, we can instead make use of a generalized system
of ODEs that represents only those of particular concern,
and their continuous evolution, through which the properties
of interest may be verified. Similar abstraction techniques
based on compositional reasoning are frequently encountered
in model checking applications [5]. What we adopt, then, is a
lightweight approach to formal methods [6], since we do not
attempt to verify an entire software system, but instead identify
abstractions and formulate models to answer questions that are
difficult to resolve through testing alone.

In the remainder of the paper, we describe our verification
approach and abstraction methods, and apply them in a case
study that involves a parameterization scheme, called the
K-profile parameterization (KPP) [7], which is implemented
in an open-source library and widely used in global ocean
models to parameterize vertical ocean mixing due to turbulent
processes. During a recent effort to incorporate a specific
version of the KPP scheme in MOMG6 [8], a global ocean
model, unrealistic physical behavior was encountered due to
a faulty configuration within the KPP scheme. We describe
hybrid verification models in KeYmaera X that reproduce the
fault and then verify a fix that now appears in production
software. We then discuss the applicability of our approach
and its relationship to other work, and conclude with some
general observations.
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II. BACKGROUND
A. Hybrid systems modeling and KeYmaera X

KeYmaera X is an axiomatic theorem prover for verifying
safety and liveness properties of hybrid systems [3]. The
tool interprets a hybrid verification model and proves prop-
erties of interest, sometimes automatically, though manual
intervention may be required when pre-defined tactics are
incapable of completing a proof. Hybrid verification models in
KeYmaera X are stated and verified using a first-order dynamic
logic, called differential dynamic logic, which incorporates
real arithmetic, modal logic operators, discrete and continuous
transitions, and control structures [9].

The notation used in KeYmaera X provides a compositional
semantics for expressing discrete and continuous transitions as
a hybrid program a. A differential dynamic logic formula of
the form ¢ — [a]v, for instance, means that hybrid program
«a, if it begins in a state satisfying formula ¢, always satisfies
the formula ¢, where — is logical implication, and [-] is the
modal logic operator “always.”

Figure 1 shows a formula that models one-dimensional
diffusion over a discrete space consisting of three nodes,
evenly spaced at Az = 1, and with associated scalar variables
\; that are taken to be continuous. It states that the formula
A1 > (Ao + A2)/2, which appears as both the initial condition
and postcondition, is invariant: if it is initially satisfied it will
remain satisfied under all executions of the hybrid program in
square brackets ([]).

A > ()\o+>\2)/2—>

{ execution begins

initial condition

{)\/1 = I{()\Q — 21 + )\2)}
¥
A > ()\0 +>\2)/2

discrete assignment
continuous evolution
loop or terminate

postcondition

Fig. 1. A differential dynamic logic formula that models continuous, one-
dimensional diffusion over a discrete space.

The hybrid program uses curly brackets ({}) to indicate
grouping, and the conventional syntax a;b to indicate the
sequential composition of hybrid programs a and b. The
program includes within it a diffusivity variable s that is
updated in a discrete manner: a statement x := e assigns
the value of e to variable x, and x := * nondeterministically
assigns any real value to x. The variable A\, in contrast,
evolves continuously in time: a statement {z' = f(z) & Q}
defines a differential equation ' = f(x) that evolves within
the region described by formula @, if given, for any duration.
The values of variables Ag and )\ are set nondeterministically.

An expression {a}* denotes nondeterministic repetition:
it repeats program a zero or more times. Intuitively, the
code block enclosed by the outer curly brackets in Figure 1
corresponds to a timestepping loop that is executed an arbitrary
number of times. At each step, a discrete and nondeterministic



assignment to « is followed by the continuous evolution of the
ODE )] = k(Ao —2A1 4+ A\2). When this continuous evolution
pauses, the hybrid program may repeat the execution or may
terminate.

Unless explicitly stated via an evolution domain constraint
@, an ODE in a hybrid program is allowed to evolve for a
nondeterministic duration, i.e., for any duration At > 0. When
modeling an advancing timestep that appears in a numerical
model, this behavior leads to an overapproximation, since
timesteps in an actual numerical model are constrained by the
CFL condition and computational efficiency considerations.
However, timesteps of arbitrary sizes will result in a more
general model and therefore stronger proofs since any discrete
update as the system evolves is part of the analysis.

While formulas as simple as the one in Figure 1 can be
proved automatically, more sophisticated ones may require
manual user interaction to complete the proof. Custom proof
tactics can be developed in KeYmaera X via a Hilbert-style
deductive system. As basic building blocks for developing
them, KeYmaera X provides a collection of fundamental
axioms, sequent calculus proof rules for loop invariants, a real
arithmetic solver, substitutions, symbolic solutions of systems
of ODEs, and others. Moreover, KeYmaera X provides pow-
erful differential proof rules, such as differential invariants,
that allow users to reason about differential equations without
having to solve them. In an iterative manner, users can employ
these building blocks or let KeYmaera X attempt to find a
proof tactic automatically. A full description of the approach
can be found in the KeYmaera X documentation [3], [9], [10].

B. Global Ocean Modeling

Earth system models, such as CESM [11], that couple
atmosphere, ocean, land, ice, and other components, are used
to simulate the past and future of Earth’s climate. Global
ocean models included in such coupled systems solve the three
dimensional primitive equations describing ocean dynamics to
determine time histories of the prognostic variables, that is,
the pressure, density, potential temperature, and salinity, and
the velocity components in three dimensions. The primitive
equations are discretized in time and space using finite differ-
ence approximations. Figure 2 shows an example of a coarse-
resolution ocean model grid. The grid is also discretized in the
vertical dimension, where the number of vertical levels varies
from 3 in the shallowest regions to 60 in the deepest, and the
grid cell thicknesses gradually increase as the depth increases.

As for time discretization, the POP2 model [13], for ex-
ample, adopts a three-time-level leapfrog scheme for stepping
forward in time. At every timestep, the discretized primi-
tive continuity equations are solved to obtain values of the
prognostic variables, and the KPP scheme, described in the
next section, is executed to obtain boundary layer depth and
diffusivities within the ocean boundary layer.

It is typical in geophysical models to carry out the compu-
tations on staggered grids where different prognostic variables
reside on different points within a grid cell. Figure 3 shows the
placement of prognostic ocean variables on a staggered grid

Fig. 2. A coarse-resolution global ocean grid [12].

called the Arakawa B grid. The diffusivities computed by the
KPP scheme, not shown in the figure, are placed on the top
and bottom interfaces of grid cells, like the vertical velocity
component w.

Fig. 3. Placement of prognostic quantities in a POP2 grid cell, where T,
S, and p are temperature, salinity, and pressure, respectively, uz and u, are
horizontal velocity components, and w is the vertical velocity component [13].

C. The KPP scheme

The cell sizes of workhorse ocean model grids used in most
climate models are on the order 1° x 1° horizontally. The
cell thicknesses are about 10 meters near the ocean surface
and 250 meters near the ocean bottom in the deepest regions.
These horizontal and vertical grid resolutions are insufficient
to resolve all processes of concern, so subgrid-scale processes
are incorporated in these models via various parameterization
approaches. One example of such subgrid-scale processes is
ocean mixing due to vertical turbulent fluxes in the boundary
layer.

The continuous evolution of a scalar quantity A, such
as temperature or salinity, over a vertical water column is
formulated as follows:

% = %(w’)\’ +wA)
where w is the vertical velocity, and so w X is the vertical
flux of A resolved by the model and is computed as an
advective process, whereas w’)’ is the unresolved (subgrid-
scale) turbulent vertical flux, which is parameterized in the
numerical model as a diffusive process [7]:
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where K is the diffusivity and +, is the nonlocal transport
term for the scalar A. The diffusivity K is the primary
variable of concern of the test case presented in this paper,
whereas -y, is out of scope and is taken to be zero.

The CVMix library [7], which implements the KPP scheme,
is an open-source library for parameterizing vertical turbulent
mixing in ocean models. In addition to the KPP scheme, the
CVMix library provides parameterizations for various other
mixing processes. Among these processes, the KPP scheme is
the one that brings about the greatest algorithmic complexity,
and it is our focus in this study as it illustrates both continuous
and instantaneous behavior.

Unlike the remaining parameterizations in CVMix that
prescribe vertical turbulent mixing in the ocean interior, the
KPP scheme is concerned with the vertical mixing only within
the ocean boundary layer (OBL) that resides above the ocean
interior and below the ocean-atmosphere boundary. The OBL
is where the ocean is directly influenced by the atmospheric
processes and solar radiation. Therefore, its treatment is highly
critical for coupled climate models. At every timestep, the
KPP scheme first computes the depth of the OBL, and then
computes K, i.e., the diffusivities at the interfaces of cells
within a water column. Figure 4 shows a time history of the
global mean of computed OBL depths over a 300-year period
from a recent CESM simulation, and Figure 5 shows spatially
the 20-year mean OBL depths computed between the model
years 281 and 300 of the same simulation.
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Fig. 4. Time history of the global average of computed OBL depths. The
black line corresponds to the monthly mean, and the red line corresponds to
the yearly mean over the entire globe.

The formula for the diffusivity K, on a cell interface at
depth d within the OBL is given by [14]:

K,\ = h'U))\(O') . G)\(CT)

where h is the OBL depth, w, is the vertical turbulent velocity
scale, whose details are omitted for brevity, G is a cubic shape
function, and o is the normalized depth within the OBL, which
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Fig. 5. 20-year mean OBL depths between model years 281 and 300.

is set to d/h, and so is O at the ocean surface and 1 at the
OBL base. The vertical shape function G has the following
form [14]:
Ga(0) = ag + a10 + azo® + azo®

The coefficients ag and a; are set to 0 and 1, respectively,
due to constraints arising from the surface boundary conditions
(at ¢ = 0). The remaining two coefficients are determined
according to conditions at the OBL base (at ¢ = 1). In order to
ensure a smooth transition from the OBL to the ocean interior,
the KPP scheme matches the diffusivities and their gradients
to the diffusivities and the gradients computed by the other
mixing schemes of CVMix, i.e., the interior mixing schemes,
at ¢ = 1. For convective (unstable) forcing conditions, the
matching is accomplished by setting ay and as as follows [14]:

ag =—2+3v/(h-wx(l)) — d,v/wx(1)
1—=2v/(h-wx(1)) + 0.v/wx(1)

as

where v and 0,v are the diffusivities and their gradients,
respectively, at the OBL base computed by the interior mixing
schemes.

III. TEST CASE: THE KPP SCHEME AND ITS MATCHING
ALGORITHM

Developers of the ocean component of CESM have re-
cently incorporated a specific version of the KPP scheme into
MOMS6, the ocean component for future versions of CESM.
While testing this newly incorporated mixing scheme, they en-
countered unrealistic physical behavior: negative diffusivities
in regions subject to convective forcing, i.e., surface cooling.!
After testing and debugging attempts that took several days,
the source was found to be in the configuration of the matching
algorithm of the KPP scheme. In this section, we develop a
hybrid verification model of the KPP scheme and detect this

'In regions where the thermal expansion coefficient is positive, surface
cooling increases the density and so reduces the buoyancy of surface water,
which results in convection. This type of surface forcing is called unstable
buoyancy forcing, a process that deepens the ocean boundary layer and
enhances vertical mixing.



behavior. We then apply a fix in the matching algorithm and
confirm that it eliminates it.

A. Modeling discrete spaces

In practice, grids on which earth system models operate
contain millions of cells and span the entire globe. If we
are to verify properties of the simulation then clearly the
approach must be sound for grids of arbitrary size. Hybrid
verification models, however, may contain only a limited num-
ber of variables before they become intractable. We therefore
make use of small, abstract grids in our models and employ
nondeterminism as needed to draw general conclusions.

In line with this perspective, we model a single water
column in our hybrid model, as shown in Figure 6 (a). The
depth D of the water column is nondeterministically assigned
an arbitrary positive value, and the distance z,, from the
ocean bottom to a cell interface, the only one explicitly
represented, is nondeterministically assigned a value between
0 and D. The water column abstraction is intended to model
an arbitrary water column within the ocean model, together
with an arbitrary cell interface within the water column. We
observe with respect to the KPP scheme that both discrete and
continuous processes over a water column are independent of
the states of other water columns. Therefore, a property shown
to hold on this interface holds on any cell interface within a
grid of arbitrary size.

—— surface
E interface Zw D—h
D - Zep = —Zer
Zw
\ -
— = bottom t
to t1 t2 t3

(a) (b)

Fig. 6. Abstract representation of a grid cell interface incident on an arbitrary
water column, where D is the depth of the water column, z,, is the distance
between the ocean bottom and the cell interface, z., is the distance between
the ocean bottom (z = 0) and the critical depth, and A is the boundary
layer depth. While D and z,, are fixed (yet nondeterministically chosen)
coordinates, z.r and h change over time t.

B. The KeYmaera X model of the KPP scheme

Following the abstraction approach laid out in the intro-
duction, we now develop a KeYmaera X model of the KPP
scheme. The main body of the model, shown in Figure 7,
begins with an antecedent that defines initial conditions,
which nondeterministically set abstract grid properties and
the state of the interface. The hybrid program then follows
with timestepping computations, enclosed by the outer curly
brackets, that are repeated an arbitrary number of times.
Finally, to ensure realistic physical behavior, the postcondition
K > 0 asserts that diffusivities at the interface z = z,, must

be positive valued: any execution sequence that violates it
corresponds to a counterexample that may arise in the actual
numerical model.

initialConditions() —
{
computeBLD; // discrete updates
computeNu;
computekK;
{2er = —2er}
¥

K >0

// continuous system

Fig. 7. Main body of the KeYmaera X model of the KPP scheme. The native
KeYmaera X syntax is occasionally replaced with mathematical symbols in
this figure and in the remainder of this paper for readability.

The timestepping computations are once again divided
into discrete and continuous parts. First, discrete updates
contained in the hybrid programs computeBLD, computeNu,
and computeK exert instantaneous changes on program vari-
ables. Then, the continuous system is expressed as an ODE,
Zt,. = —Zcr, where z,. denotes the time derivative of the
abstract variable z... A timestep begins with the discrete
updates and continues on with the evolution of the ODE
for an arbitrary duration. Once it pauses, the program either
terminates or advances to the next timestep. The continuous
system and discrete updates are described below, in turn.

a) Continuous system: We first examine the continuous
constituent of the hybrid program, which describes the time
evolution of the abstract variable z.., the depth at which
a physical property called the Bulk Richardson number is
equal to a predetermined critical value. In our hybrid program,
Zer 18 a manifestation of the continuous processes, e.g., the
evolution of the buoyancy profile determined by the temper-
ature and salinity at each level, the vertical shear, and the
ocean surface forcing conditions. By incorporating only the
continuous evolution of z., as an exponential decay, as shown
in Figure 6 (b), we abstract from these complex quantities and
their evolutions. This abstraction, i.e., the exponential decay
of z.., is in agreement with actual model results when the
water column is subject to convective forcing.

Another variable, whose evolution is shown in Figure 6 (b),
is the OBL depth, h, which is updated discretely at the
beginning of every timestep by setting its value to D — z.,
within the program named computeBLD. While the abstract
variable z., may be thought of as the embodiment of the
underlying continuous processes left out of the verification
model, e.g., the evolution of the temperature, salinity, surface
forcing, and shear, the variable & is the discrete OBL depth
that is computed by sampling z., intermittently. The initial
values of z.. and h are set to z,, and D — z,, respectively,
via the initialConditions predicate. Note that the continuous
evolution of z.. depends not only on the aforementioned
continuous processes but also on h. Therefore, every time



h is updated discretely, z., is updated accordingly, resulting
in discontinuities in the continuous evolution of z.. at the
beginning of each timestep.

b) Discrete updates: The definition of program com-
puteK,? shown below, enforces the matching condition by first
computing shape function coefficients ay and as and then
computing the diffusivity variable K at the cell interface:

HP computeK ::= {
ag:=—2+3*xv/(hxw())+ ov/w();
az:=1—v/(h*w()) — ov/w();

K :=hx*xw() *G(0,a2,a3);

1.

where h is the discrete OBL depth determined by compute-
BLD, which samples the continuous variable z.., v and Jv
are variables set by computeNu that correspond to the interior
diffusivity and the gradient of the interior diffusivity at the
base of the OBL, respectively, w is a function that returns
the vertical turbulent velocity scale value at the interface
Zz = zy, and G is the value of the shape function at z = z,,.
We omit full definitions of the initialConditions predicate
and the programs computeBLD and computeNu for brevity.
However, the complete hybrid model is available in an online
repository [15].

C. The KeYmaera X proof tactic of the KPP scheme

Having developed a hybrid verification model of the KPP
scheme, we manually construct a custom proof tactic using the
KeYmaera X user interface. In this paper, we describe some
of the key steps in the process, and again refer the interested
reader to our online repository [15] for further details of the
proof tactics employed.

The first step in constructing a custom proof tactic for our
program is to identify an invariant for the timestepping loop,
which will be needed to make the proofs go through. The
inference rule in KeYmaera X is shown below [16]:

r-JA JkalJ JEP
L'k [e*]P A
where we seek an invariant J for loop o* that is true initially
(T F J,A), is preserved by the loop body (J F [a]J), and
entails the postcondition (J F P), thereby allowing us to
conclude that I' - [a*] P, A holds.

The rule’s conclusion matches the main body of the model,
shown in Figure 7, in the obvious way: I' corresponds to
the initialConditions predicate, which sets the abstract grid
properties and the state of the interface, « is the body of the
timestep loop combining discrete updates and the continuous
system, and P is the postcondition K > 0.

We try a loop invariant that is the conjunction of the
postcondition K > 0 and an intuitive bound on the continuous
evolution, 0 < z., < z,,. The first and the third sequents of the

2The syntax HP inc ::= {z := x + 1} defines a program abbreviation inc
that is expanded to x := x 4 1 everywhere it appears, similar to an inline
function.

rule’s premise are easily shown to hold. The third, for example,
reduces to K > 0A0 < z¢r < 2z B K > 0, which is sound.
Proving the second sequent, J - [a].J, is more involved. After
a series of fundamental axioms and sequent calculus proof
rules are introduced, we end up with two sequents as our new
premise:

Chs [zv/:r = 7Zcr] (0 < Zer N Zer < Zw)
ANOF [z, = —2,] (K >0)

where © is the conjunction of the initial conditions I' and
additional expressions resulting from substituting and moving
the discrete updates to the antecedent using axioms and rules
such as the composition, assignment, and implication rules,
and /C is a real arithmetic expression obtained by similarly
substituting the associated variables, excluding z.., in the
formula of the diffusivity x. Elimination of z. from the
formula K is ultimately made possible by the loop invariant.

The first sequent of the premise is where the proof tactic
development process leads us to prove that the continuous
evaluation of z.. is indeed bounded by the domain con-
straint prescribed in the loop invariant. Proving it justifies
the substitutions and assumptions made to obtain the second
sequent of the premise, and so is critical. First, we make use
of the boxAnd tactic [17] to separate the conjunct into two
components, 0 < z.. and z.. < z,, . To prove the first, i.e.,
O F 2], = —zer) (0 < 2., for example, we make use of the
differential ghost proof rule where we add to the system an
auxiliary continuous variable y and a postcondition 4%z, = 1.
Since the new postcondition entails z.,, > 0, proving it suffices
to conclude that the sequent in question is closed soundly. For
that, we make use of the differential invariant proof rule which
successfully closes the branch, where we (deliberately) define
the continuous evolution of the auxiliary variable as i/ = 0.5y.
The differential invariant proof rule allows modelers to reason
about ODEs without having to solve them and instead by
proving that a formula p always holds after arbitrary evolutions
of the ODEs based on their right-hand sides, e.g., —z.- and
0.5y [18].

After similarly proving the second component of the
first conjunct of Equation 1, we conclude that the as-
sumptions made to obtain the second conjunct, i.e.,
O F [z, = —zc] (K > 0), are sound. To prove that this is
sound as well, we eliminate the ODE using the differential
weakening proof rule, since the postcondition K > 0 does
not involve the continuous variable z.,, and so its correctness
is not affected by the ODE. We then make use of the real
arithmetic operator in an attempt to close this final branch of
the proof tactic. Doing so leads KeYmaera X to conclude that
the premise evaluates to false, which indicates that there exists
an execution sequence leading to non-positive diffusivities at
the cell interface z = z,,.

D. The fixed matching condition

Upon inspection of the counterexample generated by KeY-
maera X, we conclude that negative diffusivities occur due
to the matching condition that matches the diffusivities «

ey



and v and their gradients, Ox and Ov, at z = D — h, as
described in Section II-C. It is observed in the counterexample
that when the OBL base falls well below z,,, and when the
interior diffusivities have a negative and steep gradient Jv, the
matching of the gradients forces x at the cell interface z = z,,
to be negative.

To prevent the case where the diffusivities in the OBL may
be negative, we modify the computation of the coefficients
ag and a3 so that when the interior diffusivity gradient Jv is
negative at the OBL base, only the diffusivities x and v are
matched by the scheme and not their gradients. The modified
computeK definition is as follows, where 7() is the conditional
operator that instructs KeYmaera X to take into account the
execution sequences of a particular conditional branch only
when @ is true.

HP computeK ::= {
{?0v <0
ag = =2+ 3xv/(h*xw());
1= /(s w();

as :

? 0v > 0;
ag:= =2+ 3xv/(h*xw()) + dv/w();
L—v/(hxw()) — Ov/w();

as

}
K = hxw() « G(o,az,as3);

).

Following again the development process summarized in
Section III-C, we are now able to prove that the postcondition
K > 0 always holds for any possible execution of discrete
updates to the continuous system, for an arbitrary number of
timesteps.

Both the discovery of the problem we address, and the
application of the fix, were made prior to performing this
study, but because testing is incomplete, the model presented
here was developed to provide additional coverage and to
increase confidence that a corner case is not being missed. A
comparison of the relative effort between the two activities
is worth noting. With respect to numerical simulation and
testing, the debugging process took several days and thousands
of core-hours. An initial version of the KeYmaera X model, on
the other hand, took less than a day to put together and consists
of about 50 lines of code. The theorem proving process for the
final version of the model took about ten to fifteen minutes to
perform, a majority of which was spent providing user input
to steer the proof tactic.

IV. DISCUSSION AND RELATED WORK

The verification approach outlined in this paper can be
viewed as a lightweight approach to formal methods since
there is partiality in modeling: we target specific properties
that can be checked with the aid of verification tools from
the field of cyber-physical systems. Here we consider such
an approach in the context of other possible concerns, and

compare it with several other approaches in the literature that
address different aspects of program correctness.

a) Numerical concerns: Our primary focus is on the
correctness of discrete, instantaneous updates in the solution
of PDEs, essentially extracting and working with a system of
piecewise continuous ODEs. In doing so, we recognize that the
corresponding numerical model is merely an approximation of
the analytical solution, whose quality depends on timestep size
and various other numerical issues, including truncation errors.

Abstracting from them yields an approach that does a lot
of heavy lifting. The test coverage possible in the temporal
dimension far exceeds what might be obtained in a verification
approach using finite-difference based time discretizations
and symbolic model checking, for instance. Doing so would
require, we suspect, large finite state models and implausibly
long traces.’

In addition, it may be possible to address some numerical
concerns in hybrid verification models by altering the continu-
ous system in a way that reflects the behavior of the numerical
model. For example, if numerical dispersion is of concern, the
ODE or its solution may be altered to exhibit the dispersive
behavior.

b) Extracting models from code: Another aspect of the
approach outlined here is that we manually extract verifica-
tion models from code, but automated approaches have the
potential to ensure that the checks being performed are sound
and, because they are automated, to make formal verification
approaches more accessible to a wider community.

Siegel et al. [19], for instance, present a framework that
tests small numerical programs for real equivalence, meaning
that one program can be transformed into the other using the
identities of real numbers. The approach is based on creating
a sequential program that serves as a specification and then
using it as the measure against which an implementation
is compared, such as a more complex MPI-based parallel
program. Equivalence checking is performed by building up
symbolic expressions in both programs and comparing them
using the SPIN model checker.

Nevertheless, modeling would seem to confer the same kind
of benefits for software, a complex artifact, as it does through-
out the sciences and engineering. Instead of attempting to
verify large-scale numerical codebases en masse, one instead
addresses the particular sources of complexity and areas of
concern using appropriate tools. And because scientists and
engineers are accustomed to working with models, there is
some potential for acceptance, particularly as the tools mature
and become easier to use.

c) State-based formal methods: The structure and be-
havior of scientific programs constitute a kind of complexity
that goes beyond just numerical concerns. Using state-based
methods [20], software is described by what constitutes a
state and how and when transitions are performed, often
at a much higher level than code. By employing notions
like predicate abstraction and abstraction refinement, one can

3Though such an approach might offer complementary benefits.



separate concerns and apply such approaches to numerical
software and its fundamental structures of data and control.

As an example, in prior work [21] we look at an ocean
circulation model used in production and an extension made
to it that offers substantial performance gains. To explore im-
plementation choices and to ensure soundness of the extension,
we use Alloy, which has tool support and an automatic form
of analysis performed within a bounded scope using a SAT
solver. In another study [22], we present a model checking
approach for verifying the types of concurrency found in
coupled earth models. By modeling read-write behavior and
the timestamps associated with updates, race-free phasing
arrangements can be generated, thereby preventing data from
either being overwritten too soon or becoming stale.

V. CONCLUSIONS

The computational cost of climate simulations is substantial:
a single run may require millions of core-hours and pro-
duce terabytes of data to analyze. Debugging such programs
through testing alone, therefore, poses its own set of practical
challenges. Based on sampling, testing is well-known to be
incomplete, motivating the development of new, supplemental
approaches that can offer some assurance in the absence of
exhaustive testing.

In this study, we describe our experience with a hybrid
theorem prover as a lightweight verification tool for rea-
soning about discrete state changes in numerical software.
Our abstraction approach is based on representing the time
evolution of physical processes as piecewise continuous ODEs,
and incorporating those discrete aspects in hybrid programs,
similar to conventional computer programs. The approach is
demonstrated in the context of large-scale numerical software,
a coupled earth system model used in production, and applied
to a newly incorporated mixing scheme to overcome some of
the limitations associated with testing. As such, it represents
a novel use of a tool designed for a different application
domain, cyber-physical systems, together with a new modeling
approach that views scientific software as a hybrid system.

We consider the application of such a tool in a relatively
uncharted domain, scientific computation, where there is little
community experience in working with formal methods. Our
approach is lightweight in the sense that there is partiality in
modeling: it is directed toward particular aspects of numerical
software. We imagine that a single approach is unlikely to
meet every need, and that developers will instead benefit from
having multiple tools in their toolboxes, so they can choose
the right one for the job.
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