Verifying Concurrency in an Adaptive Ocean Circulation Model

Alper Altuntas
National Center for Atmospheric Research
Boulder, CO
altuntas@ucar.edu

ABSTRACT

We present a model checking approach for verifying the correctness
of concurrency in numerical models. The forms of concurrency we
address are from (1) coupled modeling where distinct components,
e.g., ocean, wave, and atmospheric, exchange interface conditions
during runtime, and (2) multi-instance modeling where local vari-
ations of the same numerical model are executed concurrently to
minimize common (and therefore redundant) computations. We
present general guidelines for representing these forms of concur-
rency in an abstract verification model and then apply them to an
adaptive ocean circulation model that determines the geographic
extent and severity of coastal floods. The ocean model employs
multi-instance concurrency: a collection of engineering design and
failure scenarios are concurrently simulated using patches, regions
of a grid that grow and shrink based on the hydrodynamic changes
induced by each scenario. We show how concurrency inherent in
the simulation model can be represented in a verification model to
ensure correctness and to automatically generate safe synchroniza-
tion arrangements.

CCS CONCEPTS

« Software and its engineering — Model checking; - Mathe-
matics of computing — Partial differential equations; « Theory
of computation — Parallel algorithms;

KEYWORDS

Scientific computing, finite element analysis, hurricane storm surge,
concurrency, model checking

ACM Reference Format:

Alper Altuntas and John Baugh. 2017. Verifying Concurrency in an Adaptive
Ocean Circulation Model. In Proceedings of Correctness’17: First International
Workshop on Software Correctness for HPC Applications (Correctness’17).
ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3145344.3145346

1 INTRODUCTION

Predicting coastal floods from large-scale simulations of tropical
storms is computationally demanding. Ocean circulation models,
which attempt to capture the hydrodynamics as efficiently as pos-
sible, employ a variety of mechanisms to improve performance,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

Correctness’17, November 12-17, 2017, Denver, CO, USA

© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-5127-0/17/11...$15.00
https://doi.org/10.1145/3145344.3145346

John Baugh
North Carolina State University
Raleigh, NC
jwb@ncsu.edu

including various forms of parallelism and adaptivity. Our study
involves an adaptive multi-analysis code that eliminates redundant
computations when multiple alternatives are being simulated, such
as the topographic variations considered when designing protective
structures and barriers. The approach, called adaptive subdomain
modeling (ASM), concurrently analyzes any number of child do-
mains, with each instance corresponding to a unique design or
failure scenario, in addition to a full-scale parent domain providing
the interface conditions at the boundaries.

A necessary condition for correctness is a safety property: a child
domain without modifications must behave, hydrodynamically, like
its parent. This condition has two key aspects. The first involves
the scope of variables required to enforce interfaces on the child
domains [5, 6], and the second concerns timing: when and how
frequently to update their values within each iterative step of the
simulation.

In this study we address the latter aspect, which brings con-
currency into the picture because of possible race conditions on
quantities that are copied from the parent to child domains along
the interfaces of each child. During a concurrent run, a synchro-
nization mechanism is to be employed to prevent the parent from
overwriting pertinent data before they are retrieved by children,
and to prevent children from using stale values of these quantities.
Such guarantees are intended to be ensured by a phasing mechanism
that regulates the progression of parent and child domains during
each timestep.

Managing concurrency and ensuring that such guarantees hold
in numerical models can be challenging. Conventional validation
and verification methods like testing are both computationally de-
manding and incomplete. A complementary approach can in some
cases be found in model checking, which is based on developing
an abstract representation of a software system. A model checker
interprets the abstract verification model, constructs a state space
that includes arbitrary interleavings, and exhaustively searches it
for any violations of the correctness properties of interest. In this
study, we propose the use of such tools for verifying concurrent
numerical models and present guidelines for a particular class of
applications. We then develop an abstract verification model of con-
current ASM simulations in Promela, the input language of the SPIN
model checker [10], to ensure correctness and to determine safe
phase arrangements, i.e., the partitioning of timestep computations
into phases.

In the remainder of the paper, we describe the types of concur-
rency we aim to address. We then outline the ASM technique, its
basic computational features, and its realization in ADCIRC++ [4],
our re-implementation of the popular ADCIRC ocean circulation
model [14] with an updated software architecture. We then present
our model checking approach, along with a verification model for
concurrent ADCIRC++ simulations that we use to generate safe

https://doi.org/10.1145/3145344.3145346
https://doi.org/10.1145/3145344.3145346

Correctness’17, November 12-17, 2017, Denver, CO, USA

phase arrangements. We close with some perspectives on the ap-
proach and near-term directions for future research.

2 PROBLEM CONTEXT

Parallelism is often exploited to improve the computational perfor-
mance of numerical models. It arises through domain decomposi-
tion and a variety of other avenues, including (1) coupled modeling
and (2) multi-instance modeling. By coupled modeling, we mean the
concurrent simulation of multiple phenomena, such as ocean, wave,
and atmospheric models. By multi-instance modeling, we mean the
concurrent simulation of multiple model instances, which might
have local variations that represent parametric changes of interest
to the modeler. Examples of coupled modeling include the combina-
tion of ADCIRC and SWAN [9] for surge and wave modeling, and
global climate models like CESM [11]. Examples of multi-instance
modeling include the data assimilation approaches used in climate
modeling [16] and the ASM approach implemented in ADCIRC++,
the focus of our study.

In the case of coupled modeling, one challenge is to determine
the sequence of concurrent executions of components and the com-
munication patterns among them, e.g., precipitation flux from at-
mospheric to land components, or fresh water flux from river to
ocean components. If improperly handled or synchronized, the
execution of these concurrent components may cause flux informa-
tion or other updates to be lost before they are received by their
counterparts.

Similar race conditions can arise in multi-instance modeling as
well, if any communication is to be carried out between concurrent
instances. In ASM, for instance, a parent domain must be prevented
from overwriting quantities required by its children, and children
must be prevented from overtaking a parent in a timestep. Beyond
safety, we must also ensure that the synchronization mechanism
is deadlock-free for any possible execution sequence and model
configuration.

2.1 ASM

The ASM technique is based on concurrently executing a parent
domain and a number of child domains with local modifications to
eliminate redundant computations. Initially encompassing only the
modified regions of a domain, a patch—the geographic extent of
a child domain—grows and shrinks depending on the response of
the model so as to contain the altered hydrodynamics originating
from the modification. Figure 1 shows, in light blue, a small part of
a parent domain, along with a darker green region associated with
a child domain that evolves as the effects of a change propagate
and eventually stabilize. The parent domain, shown in Figure 2,
includes the western North Atlantic Ocean, the Caribbean Sea, and
the Gulf of Mexico. An error indicator—a measure of the difference
between the solutions in the parent and child domains—is calculated
proximal to the boundaries of the patch to assess the spatial extent
of the altered hydrodynamics. Results of our case studies show
that the technique substantially reduces computational effort while
maintaining accuracy [4].

The technique is implemented in ADCIRC++, a prototype based
on the ADCIRC ocean circulation model [14] used by the U.S. Army
Corps of Engineers (USACE), Federal Emergency Management

Alper Altuntas and John Baugh

Depth (m

-2.35

0 >) Time: 0%

>CC) Time: 1%

57.55

> NN Time: 100%

Figure 1: Expansion and contraction of a locally modified
Shinnecock Inlet child domain patch at various timesteps.

Figure 2: The region of interest shown on a parent domain
that encompasses the western North Atlantic Ocean, the
Caribbean Sea, and the Gulf of Mexico.

Agency (FEMA), and others. Developed with data abstraction in
mind, its updated software architecture is designed to facilitate
adaptive behavior and to exploit concurrency both between and
within domains. The current implementation employs shared mem-
ory parallelism for both of those types of concurrency.

2.2 ADCIRC and ADCIRC++

The ADCIRC ocean model is based on a combination of finite
element and finite difference techniques, which discretize time
and space to solve systems of partial differential equations, and
which operate on a grid of irregularly spaced nodes in a network
of nonoverlapping triangular elements that represent the surface
of the earth. Simulated time marches forward a step at a time, pro-
ducing a history of basic nodal quantities, which include water
surface elevations, velocities, and, to allow for advancing and re-
ceding flood waters, a wet/dry status indicating whether a node is
considered “wet”

During an ADCIRC timestep, the following routines are executed
in sequence: (1) timestep initialization to compute meteorological
forcing, tidal forcing, ice effects, etc., (2) generalized wave continu-
ity equation (GWCE) assembly to produce the coefficient matrix

Verifying Concurrency in an Adaptive Ocean Circulation Model

of the discretized GWCE, (3) GWCE solution based on a Jacobi
conjugate gradient (JCG) sparse matrix solver that computes new
water surface elevations, (4) determination of wetting and drying
status, and (5) momentum equation solution to compute updated
velocities.

The original ADCIRC code is based on global, non-reentrant data
structures and procedural decomposition, which complicate the
implementation of ASM, since the approach is both adaptive and
concurrent. Consequently, we designed a new software architecture
and implementation in modern C++ (using the C++14 standard)
based on object oriented design principles and data abstraction to fa-
cilitate adaptive behavior and to utilize concurrent and hierarchical
executions of multiple domain instances.

The software architecture of the updated model, ADCIRC++, is
implemented in two levels of source code. The first level, called
OpenHDM, is a collection of abstract classes and class templates
that form the general data architecture and provide methods for
concurrent and hierarchical execution of multiple domain instances
and the phasing mechanism. Its generic, dynamic, and reentrant
data containers fully support adaptive grid behavior. For storing
discrete model data, for instance, a Grid/Patch pair is implemented
where the former is the container of the actual data e.g., nodes,
cells, elements, etc., that are resized relatively less frequently at
runtime, and the latter is a virtual view of the data, providing a
level of indirection and allowing the designation of active regions
of the grid that vary dynamically [1]. OpenHDM is available from
an online repository [2]. The second level, consisting of concrete
classes derived from OpenHDM, is the model-specific source code
where the computational aspects of any model to be developed are
implemented.

Similar to the software architecture itself, parallelism is imple-
mented in two levels. The first level is inter-domain parallelism
for the concurrent execution of multiple domain instances, and the
second level is intra-domain parallelism based on decomposing a
single domain instance into submeshes, each of which is executed
by a dedicated core to reduce wall-clock time. While the imple-
mentation of inter-domain parallelism is provided in OpenHDM,
intra-domain parallelism is implemented in the second level, the
model-specific source code.

Our current prototype employs shared memory parallelism for
both levels of parallelism. Doing so reduces coding time and eases
experimentation with the new technique, but also increases com-
plexity, especially at the inter-domain level, due to race conditions
introduced by concurrent domains. We make use of the C++14
standard threading library for inter-domain parallelism because it
fully supports object oriented design and data abstraction. As for
intra-domain parallelism, we use OpenMP, which accommodates
incremental parallelization [8]: our first approach was to simply
parallelize nodal and elemental loops in timestep computations. As
a next step, we implemented a domain decomposition approach
based on dividing the computational mesh into multiple patches.
Finally, we implemented an improved domain decomposition ap-
proach where we partitioned domain instances into multiple grids,
thereby helping us resolve false sharing and improve memory lo-
cality [18]. Each incremental step required relatively modest effort,
but we observed considerable improvement in scalability in the
process.

Correctness’17, November 12-17, 2017, Denver, CO, USA

2.3 Phasing Mechanism

A key component of domain concurrency in ADCIRC++ is a syn-
chronization mechanism, called phasing, implemented in Open-
HDM. Based on grouping the computational routines (that consti-
tute a timestep) into phases by taking into account the quantities
that are transferred from parent to child domains, the mechanism
prevents the parent domain from overwriting a quantity before it
is received by the child domains, and prevents the child domains
from moving ahead of their parents.

After having completed a phase, each domain evaluates several
criteria before entering the next phase. For a child domain, the
criterion is that its parent must have completed the phase it is
about to enter. For a parent, the criterion depends on whether the
phase to be entered (p + 1) is designated to be concurrent or not,
which is decided when the phasing configuration is established. If
phase (p + 1) is flagged as concurrent, i.e., if it can be executed by
the parent while children are executing the previous phase (p), the
criterion is simply that all children must have entered the phase that
has just been completed by the parent (p). Otherwise, the criterion
for the parent is that all children must have completed the previous
phase (p). Figure 3 illustrates these criteria.

Note that, for flexibility in scheduling, one would prefer that all
phases be designated concurrent. However, data dependencies—and
other relationships affecting the way quantities are processed in
each timestep—may preclude one from doing so.

In the case of ADCIRC++ and ASM, the computational routines
to be grouped into phases are: (1) the timestep initialization, (2)
GWCE assembly, (3) GWCE Solver, (4,5) the first and second half
of the wet/dry algorithm, and (6) the momentum equations solver.
The quantities to be copied from parent to children are (1) water
surface elevations, (2) velocities, (3) wet/dry states, and (4) wind
forcing parameters.

Children:
N _ _ - wait until
parent reaches b

« - -~
Parent: 0
o If p+1 is concurrent:

wait until all
children pass a
o Else: Phase p+1

wait until all

children reach b
Figure 3: Phase execution criteria for parents and children.

Correctness’17, November 12-17, 2017, Denver, CO, USA

3 MODEL CHECKING CONCURRENT
NUMERICAL MODELS

Before introducing basic elements of our approach for modeling
and verifying concurrent systems, we note the following terms used
in our descriptions:

component: a concurrent and distinct model in a coupled
system, e.g., ocean, atmosphere, ice, and land components
in a climate modeling system.

instance (or domain): an original or locally modified model
to be simulated, e.g., a parent or any of its child domains.

critical quantity: a physical value or quantity to be trans-
ferred from one component or instance to another.

Our verification approach aims to incorporate the following
three constituents of a concurrent system in the abstract verification
model:

(1) critical quantities

(2) concurrent components and instances

(3) synchronization mechanism (or a driver)

Basic elements incorporating these constituents in a verification
model are as follows.

(1) Critical quantities. While critical quantities, e.g., masses, ve-
locities, and fluxes, are typically represented by real variables in
an actual numerical model, they can often be taken as discrete for
purposes of verification. For instance, instead of explicitly repre-
senting actual computed values of such quantities, in the abstract
model they denote the version or state of the actual quantity as an
integer value, akin to the timestamp associated with an update. This
abstraction approach is similar to data-type reduction, a method
commonly used in model checking to reduce a potentially infinite
range of values to a tractable, finite range [13, 15]. Additionally,
we use only a single variable to represent a critical quantity for an
entire computational grid. This abstraction offers substantial flexi-
bility at a coarse level: a state change in the abstract critical quantity
may represent a state change on a single grid node, on a specific
set of nodes, or on the entire grid of the actual numerical model.
Thus, we make no distinction regardless of the spatial extent of the
state change to a critical quantity. Further, we treat uninterrupted
state changes on a critical quantity over a subset or the entirety
of a grid as a unified and atomic state change in the verification
model. In other words, if a critical quantity is updated over an entire
computational grid atomically, for instance, the abstract variable
representing the critical quantity is updated only once.

In keeping with this view, we model just two abstract operations
on the integer values associated with critical quantities: write and
copy. The write (or update) operation, which increments its value
by one, denotes a component or instance computing and updating
the value of a critical variable. The copy operation, on the other
hand, denotes a component or instance retrieving the value of
the critical quantity from another concurrent component. Since
the values of critical quantities in a verification model are rather
a representation of the versions of the actual critical quantities,
the copy operation in a verification model acts as a placeholder for
correctness checks, where the modeler can specify safety properties,
such as whether the correct versions of a critical quantity are always
obtained.

Alper Altuntas and John Baugh

(2) Concurrent components and instances. We represent each com-
ponent or instance as a separate process that runs concurrently
with any others. Doing so enables the model checker to take arbi-
trary interleavings and non-deterministic interactions into account.
Ideally, the only properties to be incorporated in the abstract model
would be those directly related to synchronization and communica-
tion aspects; limiting them as such further reduces the state space
of the verification model.

(3) Synchronization mechanism (or a driver). Depending on the
model checking tool to be utilized, synchronization constructs that
regulate the execution of concurrent components or instances are in-
corporated in the verification model. The SPIN model checker [10],
for instance, provides modelers with constructs and features includ-
ing message channels, atomic blocks, multiple processes, and an
expressive executability rule to effectively represent the commu-
nication and synchronization primitives necessary for concurrent
components.

4 MODELING CONCURRENT ASM
SIMULATIONS IN PROMELA

To verify the phasing mechanism, which is necessary for the correct-
ness of the ASM technique, we now model ADCIRC++’s concurrent
timestepping routine in Promela, a C-like modeling language that
is interpreted by the SPIN model checker. We present the complete
verification model in an online repository, where we also provide
a detailed description of the model [3]. Here, we briefly describe
key points and show how the approach outlined in the previous
section can be applied in the context of an adaptive ocean model.

4.1 Critical Quantities

The movement of data in ADCIRC++ between a parent and its chil-
dren consists of basic quantities in ocean modeling: water surface
elevations, velocities, and wet/dry states along the child domain
interfaces, and wind forcing parameters within child domains. In
addition to the abstractions outlined in Section 3 for critical quanti-
ties, we now employ a further simplification: instead of defining
separate abstract variables for both a parent and its child domain,
we define a single, global integer variable that represents the states
of both domains for each critical quantity.

As suggested, the parent increments these global variables to
indicate an update in its critical quantities. The child, however, now
decrements these abstract global variables to indicate an update
in its own critical quantities. In effect, these abstract global vari-
ables now keep track of the “version difference” between the states
of parent and child domain instances for a given critical quantity.
Therefore, the value of the abstract global variable being zero be-
fore a copy operation indicates that the value being copied by the
child is the same as the value the parent had when it was at the
same location in a timestep. A value greater than zero, however,
indicates that the value being copied was computed by the parent
in a subsequent stage.

The only other operation on critical quantities is copy, which is
also represented in an abstract manner. Instead of copying data, the
abstract model incorporates a safety check to determine whether
the copy operation could ever be unsafe, i.e., whether an incorrect

Verifying Concurrency in an Adaptive Ocean Circulation Model

version of a critical quantity could be copied in any potential ex-
ecution sequence. This safety property is specified using a linear
temporal logic (LTL) property, whose details are presented in the
online repository of the verification model [3].

4.2 Concurrent Parent and Child Domain
Instances

In a typical ASM project, as many as 50 or 100 concurrent child
domains may be defined, but here—without loss of generality—we
model only a single child domain, along with a parent domain.
We are able to do so in our case because data transfer is one-way
from a parent to its children, and because child domain simula-
tions are structurally designed to avoid interfering with each other.
Such guarantees enable a form of compositional reasoning often
leveraged in model checking [7, 15].

In an actual ADCIRC++ simulation, six computational routines
are called in sequence at every timestep. These routines contain
numerical and logical operations carried out over the entire com-
putational grid to obtain a time history of nodal quantities. In the
verification model, however, we abstract from the computational
aspects and incorporate only the two operations write and copy
on the critical quantities, as outlined.

We represent the concurrent execution of parent and child do-
mains using two active Promela processes, one for each concurrent
domain. These processes execute the main function shown in Al-
gorithm 1, which calls the timestepping function infinitely many
times. Because of this, and since the execution of concurrent pro-
cesses is interleaved and non-deterministic in Promela, we simulate
all possible concurrent execution sequences that can occur during
an actual run.

As seen in the algorithm, write operations are carried out at
the same locations within a timestep for both the parent and child
domain processes. These operations correspond to computing and
assigning the given quantities in the actual ADCIRC++ timestep-
ping routines. The child domain process additionally carries out
copy operations after its write operations. These correspond to
retrieving data from the parent as a corrective step so that the
parent’s contributions are incorporated in the child domain at its
interface with the parent. In other words, these steps are where
data from the parent are used to enforce the boundary conditions
of the child domain.

4.3 Phasing Mechanism

Before instantiating the concurrent parent and child domain pro-
cesses, the verification model non-deterministically arranges the
six timestep routines by grouping them into phases where each
phase contains one or more consecutive routines. It also decides
non-deterministically whether a phase is concurrent, i.e., whether
it can be executed concurrently by the parent while the child is
executing the previous phase. If a phase is not concurrent, then the
parent waits for its children to catch up before entering into that
phase.

Once the phases are determined, the timestepping processes
of the parent and child are instantiated. During the execution of
the timestepping routines, the consecutive phases of these domain
instances are concurrently executed. Before entering into a new

Correctness’17, November 12-17, 2017, Denver, CO, USA

function exec_timestep() // advances one step in time

// Routine 0: Timestep Initialization

write(t) // compute and store winds
if isChild() then
copy(r) // copy to update winds
copy(n) // copy to assess hydrodynamics
copy(v) // copy to assess hydrodynamics

// Routine 1: GWCE Assembly
skip // no operations on critical quantities

// Routine 2: GWCE Solver

write(r) // compute and store elevations
if isChild() then
‘ copy(n) // copy to update elevations

// Routine 3: Wet/Dry Algm (1st half)

write(n) // update elevations of dry nodes
write(wd) // compute and store wet/dry states
if isChild() then

‘ copy(wd) // copy to enforce wet/dry states

// Routine 4: Wet/Dry Algm (2nd half)

write(wd) // compute and store wet/dry states
if isChild() then
‘ copy(wd) // copy to enforce wet/dry states

// Routine 5: Momentum Equations

write(v) // compute and store velocities
if isChild() then
‘ copy(v) // copy to enforce velocities

function main()
while True do
‘ call exec_timestep()

Algorithm 1: Abstract timestepping loop for parent and child
domains, where 7, 1, v, and wd are wind forcing parameters,
water surface elevations, velocities, and wet/dry states, respec-
tively. This abstract model includes only the operations on
critical quantities.

phase, both domains evaluate the criteria described in Section 2.3.
In the actual ADCIRC++ code, we make use of synchronization
primitives from the standard threading library of C++14, including
std: :mutexes, std: :condition_variables and various types of
locks, to implement these criteria. In the verification model, how-
ever, we make use of SPIN’s executability rule to replicate the
wait-notify behavior: a statement can be executed only if it evalu-
ates to true. Thus, the statements corresponding to the criteria for
entering into a new phase blocks the processes of the parent and
child until they become true, which may happen when the other
domain changes the state of the model.

The soundness of the phasing mechanism depends not only on
the criteria regulating the progression of concurrent parent and

Correctness’17, November 12-17, 2017, Denver, CO, USA

child domains from one phase to another, but also on the arrange-
ment of the computational routines as phases. The timestep routines
must be grouped into phases in such a way that all potential race
conditions on the critical quantities are eliminated. As an example,
Figure 4 illustrates an unsafe concurrent execution sequence due
to the following faulty phase arrangement randomly generated by
SPIN:

e Phase 0: Routines 0 and 1. (not concurrent)
e Phase 1: Routines 2 and 3. (concurrent)
e Phase 2: Routines 4 and 5. (not concurrent)

The concurrent execution timeline of the parent and child do-
mains (Figure 4) reveal that, during the last copy operation shown,
copy (1), the value of the abstract critical quantity to be copied is
not zero. This erroneous state in the verification model represents
the case where the value copied by the child is not the same as the
value that the parent had when it was at the same location within
that phase (Phase 1). What the child gets from the parent, instead, is
an overwritten value. The parent overwrites this quantity at ¢t = 4.
What the child should have received, however, is the value that the
parent had at ¢t = 3.

The defect in the phase arrangement leading to this safety viola-
tion is due to the fact that two separate write operations on the same
critical quantity () are placed in the same phase (Phase 1) which
illustrates the danger of the parent overwriting the first computed
value of the quantity before it is copied by the child. Note that this is
not the only type of defect that may exist in a phasing arrangement.
Notice, for instance, that a violation could have occurred earlier
in the timeline had the first write(n) operation carried out by the
parent at t = 3 occurred before the copy () operation carried out
by the child. This error would result from a phase arrangement
defect where a concurrent phase includes a write operation on a
critical quantity to be copied by the child at the preceding phase.

4.4 Verification Approach

Having modeled concurrent ADCIRC++ simulations in Promela, we
utilize the SPIN model checker to verify that the phasing mechanism
ensures the correctness of concurrency and data movement in ASM
simulations, provided that a safe phase arrangement is employed.
Thus, the verification effort involves determining those safe phase
arrangements.

The first property we consider is an assertion stating that the
abstract value of a critical quantity during a copy operation must
always be non-negative. The interpretation of this property is that
a child domain should never be able to overtake its parent and copy
a critical quantity. The model checker does not find any violation of
this property for any possible phasing arrangement, confirming that
the mechanism is able to prevent this undesired behavior regardless
of the choice of phase arrangement.

Our next safety property states that a parent can never overwrite
a critical quantity before it is copied by the child. This property is
similarly expressed as an assertion statement evaluating the value
of the abstract critical quantity to be copied. The SPIN analysis
of this safety property indicates counterexamples pointing to the
occurrence of the undesired behavior where the parent advances
more than it should and overwrites a critical quantity.

Alper Altuntas and John Baugh

To determine the safe phasing arrangements, i.e., the ones that
prevent this undesired behavior, we specify an LTL property which
states that all phase arrangements must eventually lead to an ex-
ecution sequence in which the child copies an incorrect version
of a critical quantity. Since SPIN tries to find a counterexample
for a given property, the existence of an error for this correctness
property actually reveals the phase arrangements where the ver-
sions of the copied critical quantities can never be incorrect, i.e.,
where the child domain always receives the correct versions of the
critical quantities. Recall that the undesired behavior in question
occurs when the parent advances too far during a timestep. Thus,
we administer a stress test by setting the priority of the parent
process to be higher than that of the child process.

For a maximum of 6 phases, the SPIN model checker finds 324
counterexamples. Since these counterexamples correspond to the
execution sequences where the child can never copy an incorrect
version of a critical quantity, the phase arrangements in these coun-
terexamples correspond to safe ones that prevent unsafe advance-
ment of domains and incorrect data movement between them. Using
a simple Python script (again, provided online [3]), we extract all of
the unique safe phase arrangements, which are 108 in total. Taking
the number of phases and the rate of concurrency into account, we
adopt the following phase arrangement in ADCIRC++:

e Phase 0: Routine 0. (concurrent)

e Phase 1: Routine 1. (concurrent)

e Phase 2: Routine 2. (concurrent)

e Phase 3: Routine 3. (not concurrent)

e Phase 4: Routines 4 and 5.(concurrent)

Note that Phase 3, which includes the first half of the wetting and
drying algorithm, is determined to be "not concurrent” for safety.
This result is due to water surface elevations, which are copied
by the child domain in Phase 2 and modified in both Phase 2 and
Phase 3, so the parent waits for children to finish Phase 2 before
it starts Phase 3. This prevents the parent from overwriting the
elevations in Phase 3, before the children copy this critical quantity
in Phase 2.

5 CONCLUSIONS

The concurrency inherent in coupled and multi-instance modeling
creates both opportunities and challenges that may benefit from
static analysis. In this study we show how model checking in SPIN
can be used to find race-free phasing mechanisms in an adaptive
ocean circulation model. Our coarse-grained approach requires
only relatively modest levels of human and computer effort: the
initial verification approach was put together in less than a day,
and the final model consists of just under 200 lines of Promela code.
As for computational efficiency, the SPIN model checker takes
only a couple of seconds on a laptop computer to generate all safe
phase configurations, whereas typical ADCIRC++ test runs require
thousands of CPU hours.

Compared to mechanical methods like automated model extrac-
tion, relying on manual translation of code into Promela—as we
have proposed—means we might miss lower-level defects or even
introduce errors that invalidate our verification approach. As with
any other modeling activity, however, steps can be taken to gain
confidence in a model by exercising it and by comparing it against

Verifying Concurrency in an Adaptive Ocean Circulation Model

Ph.ase 0

Parent Process > write(r);

Correctness’17, November 12-17, 2017, Denver, CO, USA

Phase 1

write(n); write(n); write(wd);

Phase 0 Phase 1

Child Process > write(r); copy(r); copy(n); copy(0); o write(n); copy(n);
— : - —
i o : 0
abstract state space vs =0 HE : e F
! Violation!

|—) runtime

Figure 4: The timeline of an unsafe concurrent execution sequence due to a faulty phase arrangement. Increments and decre-
ments in critical quantities correspond to write operations by the parent and child, respectively. A copy operation is safe only

if the value is zero at the start of a copy operation.

reality. The perspective we adopt is the one employed by advo-
cates of lightweight formal methods [12], where model checkers
and other tools are judiciously directed at trickier issues that may
not lend themselves to informal reasoning. Another example of
this lightweight approach can be found in a verification study [5]
involving ADCIRC’s wetting and drying algorithm in Alloy.

We have found that model checking, though infrequently en-
countered in scientific computing [5, 17], helps in managing the
complexities associated with concurrency in large-scale numerical
programs. In addition to helping ensure sound implementations,
the outlined approach may also be used in the context of perfor-
mance optimization. As a future direction, for instance, we plan to
utilize the approach for a coupled model to generate a set of safe
concurrency configurations (defined by component sequencing and
communication patterns) to be considered as a search space where
a cost function is defined and solved to obtain optimal concurrency
configurations.

REFERENCES

[1] Alper Altuntas. 2016. An Adaptive Multi-Analysis Technique and Software Archi-
tecture for Ocean Circulation Models. Ph.D. Dissertation. North Carolina State
University.

[2] Alper Altuntas. 2016. OpenHDM. https://github.com/alperaltuntas/OpenHDM.
(2016).

[3] Alper Altuntas. 2017. Promela Models of ASM Phasing Mechanism. https:
//github.com/alperaltuntas/verifyPhasing. (2017).

[4] Alper Altuntas and John Baugh. 2017. Adaptive subdomain modeling: A multi-
analysis technique for ocean circulation models. Ocean Modelling 115 (2017),
86-104.

[5] John Baugh and Alper Altuntas. 2016. Modeling a Discrete Wet-Dry Algorithm
for Hurricane Storm Surge in Alloy. In Abstract State Machines, Alloy, B, TLA,
VDM, and Z: 5th International Conference, ABZ 2016, Linz, Austria, May 23-27,
2016, Proceedings. Springer International Publishing, Cham, 256-261.

[6] John Baugh, Alper Altuntas, Tristan Dyer, and Jason Simon. 2015. An exact
reanalysis technique for storm surge and tides in a geographic region of interest.
Coastal Engineering 97 (2015), 60-77.

[7] Sergey Berezin, Sérgio Campos, and Edmund M Clarke. 1998. Compositional

reasoning in model checking. Lecture Notes in Computer Science 1536 (1998),

81-102.

Leonardo Dagum and Ramesh Menon. 1998. OpenMP: an industry standard API

for shared-memory programming. IEEE computational science and engineering 5,

1(1998), 46-55.

[9] JC Dietrich, M Zijlema, J] Westerink, LH Holthuijsen, C Dawson, Richard A

Luettich, RE Jensen, JM Smith, GS Stelling, and GW Stone. 2011. Modeling

hurricane waves and storm surge using integrally-coupled, scalable computations.

Coastal Engineering 58, 1 (2011), 45-65.

Gerard Holzmann. 2003. Spin model checker, the: primer and reference manual.

Addison-Wesley Professional.

[11] James W Hurrell, Marika M Holland, Peter R Gent, Steven Ghan, Jennifer E

Kay, Paul J Kushner, J-F Lamarque, William G Large, D Lawrence, Keith Lindsay,

et al. 2013. The community earth system model: a framework for collaborative

research. Bulletin of the American Meteorological Society 94, 9 (2013), 1339-1360.

Daniel Jackson and Jeannette Wing. 1996. Lightweight formal methods. IEEE

Computer 29 (1996), 22-23.

[13] Ryan Kirwan, Alice Miller, Bernd Porr, and P Di Prodi. 2013. Formal modeling of

robot behavior with learning. Neural computation 25, 11 (2013), 2976-3019.

Richard Albert Luettich and Joannes] Westerink. 2004. Formulation and numerical

implementation of the 2D/3D ADCIRC finite element model version 44. XX. R.

Luettich.

Kenneth McMillan. 1999. Verification of infinite state systems by compositional

model checking. Correct Hardware Design and Verification Methods (1999), 705—

705.

Kevin Raeder, Jeffrey L Anderson, Nancy Collins, Timothy] Hoar, Jennifer E

Kay, Peter H Lauritzen, and Robert Pincus. 2012. DART/CAM: An ensemble data

assimilation system for CESM atmospheric models. Journal of Climate 25, 18

(2012), 6304-6317.

Stephen F Siegel, Anastasia Mironova, George S Avrunin, and Lori A Clarke. 2008.

Combining symbolic execution with model checking to verify parallel numerical

programs. ACM Transactions on Software Engineering and Methodology (TOSEM)

17, 2 (2008), 10.

Christian Terboven, Dirk Schmidl, Henry Jin, Thomas Reichstein, et al. 2008. Data

and thread affinity in OpenMP programs. In Proceedings of the 2008 workshop on

Memory access on future processors: a solved problem? ACM, 377-384.

—
&

[10

[12

[14

[15

=
&

(17

(18

https://github.com/alperaltuntas/OpenHDM
https://github.com/alperaltuntas/verifyPhasing
https://github.com/alperaltuntas/verifyPhasing

	Abstract
	1 Introduction
	2 Problem Context
	2.1 ASM
	2.2 ADCIRC and ADCIRC++
	2.3 Phasing Mechanism

	3 Model Checking Concurrent Numerical Models
	4 Modeling Concurrent ASM Simulations in Promela
	4.1 Critical Quantities
	4.2 Concurrent Parent and Child Domain Instances
	4.3 Phasing Mechanism
	4.4 Verification Approach

	5 Conclusions
	References

